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ABSTRACT 
 Integrating CO2 capture with biomass/waste fired 

combined heat and power plants (CHPs) is a promising 
method to achieve negative emission. However, the use 
of versatile biomass/waste and dynamic operation of 
CHPs result in big fluctuations in the flue gas (FG) and 
heat input to CO2 capture. Dynamic modelling is essential 
to investigate the interactions between key process 
parameters in producing the dynamic response of the 
CO2 capture process. In order to facilitate developing 
robust control strategies for flexible operation in CO2 
capture plants and optimizing the operation of CO2 
capture plants, artificial intelligence (AI) models are 
superior to mechanical models due to the easy 
implementation into the control and optimization. This 
paper aims to develop an AI model, Informer, to predict 
the dynamic responses of MEA based CO2 capture 
performance from waste-fired CHP plants. Dynamic 
modelling was first developed in Aspen HYSYS software 
and validated against the reference. The operation data 
from the simulated CO2 capture process was then used 
to develop and verify Informer. The following variables 
were employed as inputs: inlet flue gas flow rate, CO2 
concentration in inlet flue gas, lean solvent flow rate, 
heat input to CO2 capture. It was found that Informer 
could predict CO2 capture rate, reboiler temperature and 
energy consumption with the mean absolute percentage 
error of 6.2%, 0.08% and 2.7% respectively. 
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NONMENCLATURE 

Abbreviations  

BECCS 
bioenergy with carbon capture and 
storage 

CHPs combined heat and power plants 

Bio-CHPs 
biomass fired combined heat and 
power plants 

Waste-CHPs 
waste fired combined heat and 
power plants 

BA-NN 
bootstrap aggregated neural 
networks  

LSTF 
long sequence time-series 
forecasting  

MAPE mean absolute percentage error 

FG flue gas 

AI artificial intelligence  

DH District heating 

MEA monoethanolamine 

MEA-CA MEA based chemical absorption 

Symbols  

M mass flowrate 
x volume concentration 
Qreb reboiler heat duty 
n sample size  
yi the ith predicted value 
ŷi the ith actual value 
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1. INTRODUCTION 
Negative emission technologies are needed to meet 

global warming targets by removing CO2 from the 
atmosphere. Bioenergy with carbon capture and storage 
(BECCS), which combines CO2 capture with bioenergy 
conversion and utilization, is emerging as the best 
solution to decarbonize emission-intensive industries 
and sectors [1]. Integrating BECCS in biomass or waste 
fired combined heat and power (bio-CHP or waste-CHP) 
plants is highly possible due to the large amount of CO2 
emission. Among different CO2 capture technologies, 
monoethanolamine (MEA) based chemical absorption 
(MEA-CA) has already been commercialized.  

Compared to coal-fired power plants, bio/waste-CHP 
plants are characterized as more fluctuations in the 
operation, which are primarily determined by the heat 
demand [2]. In addition, a wide range of biomass/waste 
could be used as fuel, which has different properties [3]. 
The changes in both operation and fuel can lead to big 
variation in the flue gas (FG) flowrate and composition. 
Moreover, because there is a competition on heat 
between heat supply and CO2 capture, the dynamic 
change of heat demand will affect the heat input to CO2 
capture. Such fluctuations from CHP plants, including FG 
flowrate, compositions and the heat input, make it 
imperative to investigate the dynamic behavior of CO2 
capture by MEA-CA. In order to facilitate the design of 
control systems and the optimization of operation, it is 
essential to develop reliable dynamic process models of 
MEA-CA.  

Many research works have focused on the 
mechanistic models of MEA-CA. For example, Åkesson et 
al. [4] developed a rate-based dynamic model of MEA-CA 
using Modelica. In response to the decrease of FG 
flowrate by 30%, CO2 removal rate in the absorber was 
shown to increase rapidly, while more than 1 hour was 
required for the top temperature of the stripper to rise 
to a new steady state. However, the establishment of 
mechanistic models is very time consuming and requires 
extensive knowledge of the underlying physics of the 
process. Since numerical optimization typically requires 
thousands of function evaluations, evaluation of a 
detailed mechanistic model is typically computationally 
very demanding. To overcome this problem, artificial 
intelligence (AI) models can be developed from process 
operational data and used in plant optimization [5]. 
However, only a few studies focus on the investigation of 
AI models. For example, Li et al. [5] developed the 
bootstrap aggregated neural networks (BA-NN) model 
for MEA-CA to predict CO2 capture rate and the flowrate 
of captured CO2 by employing the following variables as 

model inputs: inlet FG flow rate, FG CO2 concentration, 
FG pressure, FG temperature, lean solvent flow rate, 
MEA concentration and temperature of lean solvent. 
Simulated operation data of CO2 capture from gPROMS 
simulation are used to develop and verify BA-NN model. 
The results showed that BA-NN model is a useful tool to 
model MEA-CA. However, neural networks need to be 
trained with large, labeled datasets that were costly and 
time-consuming to produce for long sequence time-
series forecasting (LSTF). In addition, the influence of 
fluctuations of heat input to CO2 capture has not been 
considered, in which energy consumption per unit 
captured CO2 is a key indicator. To bridge the knowledge 
gap, the work aims to develop an accurate AI model for 
CO2 capture. Transformers are in many cases replacing 
convolutional and recurrent neural networks and 
become the most popular types of deep learning models 
by using advanced Encoder-decoder structure [6]. 
Informer is a transformer-based model, which is a very 
efficient model for long sequence time-series 
forecasting, and significantly outperforms existing 
methods [7]. Therefore, the Informer model is selected 
to predict CO2 capture rate and energy consumption, by 
considering the variations of both FG and heat input from 
waste-CHP plants. The operation data from Aspen HYSYS 
software is used to build and verify the AI model.  

2. METHODS  

2.1 System description 

A mechanistic dynamic model has been developed 
for MEA-CA in Aspen HYSYS V12.1, which details can be 
found in our previous work [8]. The schematic diagram of 
the system is illustrated in Figure 1. FG enters the 
absorber from the bottom and contacts counter-
currently with a lean MEA solution. After absorption, the 
rich MEA solution is sent into the stripper, in which CO2 
is regenerated from the top when heat duty is provided 
to reboiler, and resulted lean MEA solution is 
recirculated back to the absorber. To make the system 
run stably, the integral controllers have been integrated 
to maintain the liquid level of condenser and reboiler. 
Due to the loss of H2O and MEA, makeups are added by 
mass balance. The model is scaled up in this paper in 
Aspen HYSYS V12.1 to match the flue gas generated from 
a typical 660 MWe coal-fired power plant. The 
specifications of absorbers/stripper and the main 
operating parameters under nominal condition are given 
in Table 1. 
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Tab.1. Main specifications and operating parameters 

Parameter  Value Parameter Value 

FG Absorber 

FG temperature 
(K) 

319.7 
Packing height 
and column 
diameter (m) 

17.4; 
8.7 

O2vol% in FG 2.7 Packing type 
IMTP#
38MM 

H2Ovol% in FG 4.8 Pressure (kPa) 101.3 

Solution Stripper 

MEA 
concentration 
(wt%) 

30 
Packing height 
and column 
diameter (m) 

10.9; 
4.3 

Lean loading 0.287 Packing type 
IMTP#
38MM 

Solution 
temperature (K) 

314 
Condenser 
pressure (kPa) 

159 

 

2.2 Data preparation 

The developed MEA-CA model is used as the 
simulation platform for this study. The CO2 capture rate 
(y1), reboiler temperature (y2) and energy consumption 
per unit captured CO2 (y3) are three good indicators for 
the operating performance of the CO2 absorption and 
desorption. To predict these indicators, the following 
important factors are selected as inputs, including FG 
flow rate (u1), FG CO2 concentration (CO2vol%) (u2), the 
lean solvent flow rate (u3) and the reboiler heat input 
(u4). 

Random function is used to generate the excitation 
signal of 4 inputs with step change each 15 mins, as 
shown in Figure 2, in which the ranges of FG flowrate and 
FG CO2vol% are from an actual waste-CHP plant, and the 
ranges of reboiler heat input and solvent flowrate are 
determined by the assumption of 50-90% of capture 
rate. Based on the excitation signal in Fig. 2, the dynamics 

of CO2 capture are simulated using the MEA-CA model in 
the Aspen HYSYS simulator. As outputs, CO2 capture rate 
and energy consumption are calculated based on 
Equation 1 and Equation 2. All input and output data are 
sampled in every 5 s to form a training set of 12,060 
groups of sampled data within 1005 mins. 

𝐶𝑂2 𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 =
𝑀𝑝𝑟𝑜𝑑𝑢𝑐𝑡∗𝑥𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐶𝑂2

𝑀𝐹𝐺∗𝑥𝐹𝐺
𝐶𝑂2

∗ 100%      (1)              

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
𝑄𝑟𝑒𝑏

 𝑀𝑝𝑟𝑜𝑑𝑢𝑐𝑡∗𝑥𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝐶𝑂2

(𝑘𝐽 𝑘𝑔⁄ 𝐶𝑂2)     (2)                

where M is the mass flowrate, x is the volume 
concentration; Qreb is the reboiler heat duty. 

2.3 Identification of the Informer model 

Informer model was proposed to be beyond efficient 
Transformer model for LSTF [7], which has a high 
prediction capacity by capturing precise long term 
temporal dependency and short term temporal trend 
efficiently. It shows three distinctive characteristics: (i) a 
ProbSparse self-attention mechanism makes lower time 
complexity and reduces memory usage and has excellent 
performance on sequences' dependency alignment. (ii) 
the self-attention distilling highlights dominating 
attention by halving cascading layer input, and efficiently 
handles extreme long input sequences. (iii) the 
generative style decoder drastically improves the 
inference speed of long-sequence predictions by the 
prediction at one forward operation.  

 
Fig. 1. Flowsheet of MEA-based CO2 capture 

 
 

 
Fig.2. Excitation signal of the four inputs (a) Reboiler duty 

(b) Lean MEA flowrate (c) FG CO2vol% (d) FG flowrate 
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In this study, the Informer model is implemented by 
Python coding with PyTorch deep learning framework to 
train the model by using the output values from Aspen 
HYSYSV12.1. The generated data were split into training 
data (60%), validation data (20%) and testing data (40%). 
The data were scaled to zero mean and variance of 
standard deviation before they were used for model 
training. Because the temporal complexity of Aspen 
HYSYSV12.1 is not so much, the model does not need to 
be constructed deeply as it probably brings overfitting. 
Thus, we set the number of self-attention layers in 
encoder and decoder separately as 1. The dimension of 
feature extraction of layers to be 256. The dimension of 
the last fully connected layer for output generation is 
2048. The dropout rate is 0.1. The learning rate is 0.0001. 
Also, the patience for early stopping is 10 epochs, which 
means that as long as the validation loss does not 
decrease in continuous 10 epochs, the training process 
will be ended. 

3. RESULTS 
The mean absolute percentage error (MAPE), 

defined by Equation 3, is used to evaluate the 
performances. 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |(𝑦𝑖 − 𝑦�̂�) 𝑦�̂�⁄ |𝑛

𝑖=1 × 100%      (3)                   

where n is the sample size; yi is the ith predicted 
value; ŷi is the ith actual value. 

As shown in Figure 3, by using the AI model of 
Informer, the MAPE is 6.25% for the prediction of CO2 
capture rate. In addition, Informer can portray the 
character of CO2 capture rate very well over the range of 
60-100%, but higher deviations over the range below 
50% and above 125%. As shown in Figure 4 and Figure 5, 
the MAPE of Informer are 0.08% for the prediction of 
reboiler T, and 2.7% for the prediction of energy 
consumption, respectively. 

4. DISCUSSION 
The dataset generation from physical model is now 

used. The operation data from the real test CO2 capture 
plant over a long time is expected to update and improve 
the AI model for future application. Also, the influence of 
capacity of different CO2 capture systems on the model 
development should be considered. For flexible 
operation of CO2 capture plants, based on AI models that 
could track the dynamic response, the AI based 
controllers are also promising to find the best future 
control sequence. 

5. CONCLUSIONS 
An AI model, Informer, is developed to predict the 

dynamic responses of MEA based CO2 capture 
performance from waste-fired CHP plants. By employing 
the following variables as inputs, inlet flue gas flow rate, 
CO2 concentration in inlet flue gas, lean solvent flow rate, 
heat input to CO2 capture, it was found that the mean 
absolute percentage error of Informer is 6.25% for the 
prediction of CO2 capture rate, 0.08% for the prediction 
of reboiler temperature, and 2.7% for the prediction of 
energy consumption, respectively. 

 
Fig. 4. The result of reboiler temperature 
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Fig. 5. The result of energy consumption 
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Fig. 3. The result of CO2 capture rate 
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