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ABSTRACT 
 Accurate lithium-ion battery health estimation is 

crucial to ensure the safe and stable operation of energy 
storage battery systems. To address the problem of 
inaccurate battery state of health (SOH) estimation due 
to low sampling frequency and few stored data in the 
energy storage battery system, this paper proposes a 
battery capacity degradation trajectory reconstruction 
method based on convolutional neural network (CNN). 
Firstly, the battery capacity increment curves are 
analyzed to select the voltage segments with obvious 
differentiation for various degradation states of 
batteries. Secondly, the selected voltage-capacity 
segments in the first 30 cycles of batteries are input to a 
3-layer CNN. Finally, the life-span capacity degradation
curves are directly reconstructed without artificially
feature selection and any voltage-capacity data after 30
cycles. The results show that the method has a high
accuracy of capacity reconstruction with a mean
absolute percentage error (MAPE) within 0.7%.

Keywords: Lithium-ion battery, convolutional neural 
network, capacity trajectory reconstruction  
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1. INTRODUCTION
Lithium-ion batteries have been the main energy

source in the field of energy storage, attributed to high 
energy density, power density, and long lifespan [1][2]. 
Due to the influence of profiles and the electrochemical 
properties, batteries can suffer from capacity 

degradation and increase in internal resistance, which 
affects the usable energy and power of the battery and 
results in the battery not being able to meet the 
performance requirements of the actual profiles [3]. 
Therefore, accurate estimation of state of health is 
crucial for the reliability of batteries in energy storage 
systems. 

The SOH estimation methods can be categorized into 
two types: model-based and data-driven. Model-based 
methods mainly build various models to simulate the 
battery behavior, and filtering algorithms and observers, 
such as Kalman filter (KF) [4] and particle filter (PF) [5], 
are applied to identify the model parameters to achieve 
the SOH estimation. One of the widely used models is the 
electrochemical model, which uses partial differential 
equations to simulate the material and charge transfer 
kinetic properties that are closely related to battery 
degradation [6]. Data-driven methods do not need to 
rely on models, and directly estimate battery SOH based 
on a large amount of battery degradation data by 
machine learning methods, including support vector 
machines [7], correlation vector machines [8] and 
Gaussian process regression [9]. 

Most of the above methods rely on real-time battery 
data to achieve accurate SOH estimation. However, in 
practical applications, the battery health state cannot be 
well estimated owing to lower sampling frequency of the 
actual battery management system (BMS) with poor 
data quality, which brings great difficulties in battery 
SOH estimation. For this reason, this paper proposes a 
CNN-based capacity degradation trajectory 
reconstruction method to estimate the SOH of the 
battery in different cycles. Only part of voltage-current 
data before the first 30 cycles are required to predict the 
battery degradation trajectory. Firstly, the battery 
voltage-capacity intervals that are strongly correlated 
with the battery aging are analyzed. Then a three-layer 
CNN for trajectory reconstruction is constructed, and the 
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voltage-capacity data are input into the CNN to obtain 
the capacity degradation trajectory of the battery. 

2. METHODS 

2.1 Battery incremental capacity analysis  

As an in-situ non-destructive analysis method, 
incremental capacity analysis (ICA) is widely used in the 
mechanism analysis of lithium-ion battery degradation. 
The basic principle of ICA is to differentiate the terminal 
voltage (V)-charge/discharge capacity (Q) curve of 
lithium-ion batteries to obtain the relationship between 
capacity increment and terminal voltage. Then the long 
and flat voltage plateau are transformed on the V-Q 
curve into the easily recognizable capacity increment 
peak. Its definition can be expressed by Eq. (1). 

𝐼𝐶 =
𝑑𝑄

𝑑𝑉
   (1) 

The data used in this paper is the publicly available 
lithium iron phosphate (LFP) battery dataset, which 
consists of 124 LFP/graphite batteries with a rated 
capacity of 1.1 Ah. The experiments were conducted at 
30°C. The charge profiles are set to multi-stage charging. 
Firstly, all batteries were charged with constant current 
(CC) until the certain state of charge (SOC). Next, another 
CC was applied to charge up to 80% SOC. It should be 
noted that all batteries are charged under various CCs. 
Finally, batteries were charged to 3.6 V with 1C constant 
current-constant voltage (CC-CV) mode. As for discharge 
profiles, 4C rate current is utilized to discharge batteries 
to 2.0 V. The degradation trajectory curves of all 
batteries in the dataset are given in Fig. 1. In this paper, 
the failure threshold is set to 84% SOH. 

 
Fig.1 The discharge capacity curves of 124 cells. 

In contrast to the other analyses in the literature, this 
paper does not perform ICA on the OCV curves measured 
at small currents, but directly analyzes the battery 
discharge data under diverse high-rate profiles. The 
discharge curves and IC curve of one of the batteries are 
shown in Fig. 2. Due to the effect of high-rate profile, 

there exists only one main peak in the IC curve, which is 
considered to be related to the internal reaction kinetic 
properties of the battery. 

 
(a) Discharge voltage-capacity curve. (b) IC curve 
Fig.2 The discharge voltage-capacity curve and IC curve 

of one cell. 
The IC curves of this battery at different cycles are 

shown in Fig. 3. It can be found that the height of the 
main peak of the IC curve shows a decreasing trend with 
cycles, which further verifies the strong correlation 
between the mentioned height of the main peak and 
capacity degradation. As a result, the voltage-capacity 
segment corresponding to this peak is selected as the 
input to the CNN for subsequent trajectory 
reconstruction. We also noted a peak around 2.5V, but 
the magnitude of this peak was small and the difference 
was not significant enough to use it in follow-up. 

 
Fig.3 IC curves of one cell under different cycles 

2.2 CNN 

A typical CNN structure consists of convolutional 
layer, pooling layer, and fully-connected layer,The 
convolutional layer extracts high-dimensional features 
by performing convolutional operations on the input 
voltage-capacity segments. And the information flow of 
the input data undergoes the convolutional operation 
and activation function computation when flowing to the 
fully connected layer. The mathematical expression is 
shown in Equation (2): 
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Fig.4 The proposed CNN model. 

ℎ = 𝜎(𝜔𝑥 + 𝑏)    (2) 
where x denotes the input data; w denotes the 

convolution kernel, i.e., the weight vector; b denotes the 
bias of the convolution layer, and w and b are acquired 
and updated during model training; σ is the activation 
function of the convolution layer, and h is the output 
data of the convolution layer. 

The pooling layer compresses the output features 
from the convolutional layer based on the pooling size, 
which is conducive to reducing the computational 
pressure of the model and discard some irrelevant 
information. The common methods include average 
pooling and max pooling. The fully-connected layer 
mainly aggregates the features of multiple channels and 
extracts the global features to ultimately output the 
desired length of the predicted sequence. 

In this paper, the model structure is schematically 
shown in Fig. 4. The first layer is a two -dimensional CNN 
with 32 channels and 5*5 convolution kernel, and max 
pooling with a pooling size of 5*5 is employed; the 
second layer is a two-dimensional convolution with 64 
channels and a 5*5 convolution kernel, using max 
pooling with a pooling size of 2*5; the third layer is a two-
dimensional convolution with 128 channels and a 5*5 
convolution kernel, also with max pooling of 2*5. After 
the Flatten layer, the two series fully-connected layers 
are immediately followed, with 600 and 419 neurons, 
respectively. ReLU is chosen as the activation function 
for each layer, and mean absolute error is chosen as the 
error function during the model training process. The 
learning rate is 2e-4, and the batch_size is 512. The 
maximum number of iterations is 150, and the ratio of 
training set, validation set and test set of the model is 
6:2:2, and the data generation and model training are 
realized in Keras framework. 

Since the output of CNN is a constant length 
sequence, the original battery capacity curves with 
different end of lives (EOLs) are required to be 
compressed. Considering that the SOH estimation is 
based on historical data, the EOL of every battery is 
known. We compress every capacity degradation curve 
to the length of 419 that is same to the number of 

neurons in the last fully-connected layer. Then the 
output capacity sequences are reduced according to the 
compression ratio to get the lifecycle capacity 
degradation trajectories of the batteries with different 
EOLs. 

3. RESULTS AND DISCUSSION 

Based on the proposed CNN model, the degradation 
trajectory reconstruction curves of some cells in the test 
set are shown in Fig.5. Fig.5 (a)(b)(e)(f) show the 
discharge voltage curves of four cells in test set. The EOLs 
for the four cells were 468, 837, 1018, 1287, respectively. 
The red curves in Figures are the true curves of cells, and 
the blue ones are curves predicted by the CNN model. It 
is obvious that the two curves of each cell are roughly 
close to each other. Fig.5 (c)(d)(g)(h) show the capacity 
relative errors between the estimation results and true 
values. All maximum relative errors of 4 cells are not 
more than 0.8%. These results illustrate that the 
proposed method well predicts the SOH of each cell 
under different cycles. 

In addition, the MAPEs of 24 test set cells are 
presented in Fig. 6(a), with the horizontal coordinate 
being the number of 24 cells and the vertical coordinate 
being the MAPE. It can be identified that the MAPEs of 
all 24 cells are less than 0.7%. The box plot of the MAPEs 
is shown in Fig. 6(b), with the median equals to 0.287%, 
and the upper and lower quartiles are 0.42% and 0.202%, 
respectively. These errors are small enough to satisfy 
actual needs and the proposed method accurately 
estimates the SOH of the battery under different profiles. 

4. CONCLUSIONS 

In this paper, a battery capacity degradation 
trajectory reconstruction method based on 
convolutional neural network is proposed. Unlike the 
existing methods for estimating SOH based on real-time 
data, the proposed method can estimate SOH based on 
the voltage-capacity segments of the first 30 cycles 
without collecting real-time data. Firstly, the battery 
capacity increment curve is analyzed, and voltage-
capacity segments that are sensitive to battery aging 
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states are extracted. Secondly, the voltage-capacity 
segments of the first 30 cycles are inputted into a 3-layer 
CNN. Finally, the lifespan capacity degradation curve is 
directly reconstructed without any voltage-capacity data 

after 30 cycles. The method has high capacity 
reconstruction accuracy with an MAPE within 0.7%, 
which is helpful for subsequent battery system fault 
diagnosis and early warning. 

   
(a) Discharge voltage curves of cell 1.   (b)Discharge voltage curves of cell 15 

   
(c) Capacity relative error of cell 1.    (d) Capacity relative error of cell 15. 
 
 

   
(e) Discharge voltage curves of cell 12.   (f)Discharge voltage curves of cell 8. 
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(g) Capacity relative error of cell 12.   (h) Capacity relative error of cell 8. 

Fig.5 Degradation trajectory reconstruction results and relative errors. 

   

(a) MAPEs of 24 Cells.          (b) The boxplot of MAPEs. 
Fig.6 The MAPEs of 24 Cells and the boxplot. 
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