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ABSTRACT 
 Achieving a synergistic effect of carbon emission 

and pollution reduction is important to China. However, 

whether the low-carbon transformation measures can 
simultaneously achieve the reduction of industrial 
pollution remains unclear. This paper takes the low-

carbon city pilots as a quasi-natural experiment, 
combining the time-varying difference in difference (DID) 

model and the spatial Durbin model to explore whether 
the low-carbon city policy can reduce industrial SO2 
emissions. The results show that the low-carbon city 

policy significantly reduces local industrial SO2 emissions, 
but raises the emissions of neighboring cities. For the 
mechanism, the low-carbon city policy promotes green 

technology innovation to reduce industrial SO2 
emissions. In addition, low-carbon city policy shows a 

spatial spillover effect by influencing local industrial 
enterprises and foreign direct investment to transfer to 
non-pilot cities.   
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1. INTRODUCTION 
Countries around the world have put forward low-

carbon transformation goals against climate change[1]. 

China, as a major energy consumer, has actively 
responded to climate change by proposing the goal of 

carbon peaking and carbon neutrality. Low-carbon city 
pilot policy is an important initiative for China's low-
carbon transition [2]. The pilots were established to 

promote sustainable urban development[3]. After the 
policy was implemented, pilot cities began to promote 
structural changes, especially in high-carbon-emitting 

industries. The high carbon emission industries are 

frequently characterized by high pollutant emitting [4].  
Therefore, promoting a low-carbon transition has the 
potential to simultaneously reduce industrial pollution. 

Currently, China attaches great importance to promoting 
the synergy of pollution and carbon reduction [5]. 

Studies have been conducted on whether the low-

carbon transition can realize the synergistic effect of 
reducing pollution emissions. Many scholars believe that 

the measures to promote low-carbon transition are 
conducive to reducing pollution. Scholars take 
environmental regulations as quasi-natural experiments 

and use the DID model to test whether the low-carbon 
transition policy can realize the synergistic effect of 
pollution reduction[6–8]. This approach solves the 

endogeneity problem to a certain extent. However, the 
low-carbon transition policy not only has impacts on the 

local market but also on the pollution emissions of 
neighboring cities through industrial transfer[9,10]. To 
address this, many scholars have researched the spatial 

spillover effects of environmental regulations[11,12]. The 
spatial spillover effects are generally generated through 
the transfer of polluting enterprises and technological 

progress. Combining the DID and spatial effect model can 
be used to explore whether low-carbon measures can 

achieve the synergistic effect of reducing pollution[13,14]. 
This paper takes the launching of the first and 

second batches of low-carbon city pilots to test the 

impact of the low-carbon city policy on SO2 emissions. 
We examine the spatial effects and mechanisms in terms 

of the exit of enterprises, the transfer of foreign 
investment, and the innovation of green technology. We 
aim to provide useful insights for realizing the synergistic 

effect of carbon emission and pollution reduction. 

2. DATA SOURCE AND EMPIRICAL MODEL  

2.1 Data source 
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This paper collects city-level data in China from 2007-
2016, sourced from the statistical yearbooks of Chinese 

cities. Cities with missing values are excluded. In 
addition, spatial spillovers at the city level generally 

affect neighboring cities, so spatially non-neighboring 
cities are excluded. Totally 268 cities with 10 years of 
data are selected in this study. Referring to the 

government's "Notice on the Pilot Work of Low-Carbon 
Provinces, Regions and Cities" issued in 2010, the first 
batch of pilots included both provinces and cities, which 

accounted for about 54.16% of the country's total carbon 
emissions. The second batch of pilots was announced at 

the end of 2012, including 33 cities. In 2017, the third 
batch of low-carbon pilot cities was announced. 
However, due to data constraints, they were not 

included in the analysis. The experimental and control 
groups were identified, as shown in Fig. 1, with pilot 
cities included in blue and not included in green. 

 
Fig. 1 Low-carbon city pilot cities and cities in the 

control group 

2.2 DID model and spatial effect model 

State the objectives of the work and provide an adequate 
background, avoiding a detailed literature survey or a 

summary of the results. 

2.3 Section of material and methods 

The DID model is widely used in policy evaluation to 

estimate the causal effects by comparing the differences 
before and after the policy intervention. The 
implementation of the low-carbon city pilot can be 

regarded as a quasi-natural experiment. Since the policy 
pilots are implemented in batches, this paper uses a 

time-varying DID model for estimation with the following 
basic settings: 
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yit is the dependent variable. DIDit is the term 

representing the policy effect, taking 0 before a city 
becomes a pilot and 1 after it becomes a pilot. x is the 

control variable. β is the estimated coefficient. μi is the 
city fixed effect. δt is the time fixed effect. εit is the error 

term. 
The spatial model is combined with a DID model: 
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W is the spatial weight matrix, which is set as the 
adjacency matrix. The existence of connecting 
boundaries in the city is taken as 1, otherwise, it is taken 

as 0, and normalized. The ρ, β, γ, λ are estimated 
coefficients. Equation (2) is the general form of the 
spatial-DID model. when ρ=β2=γ2=0, the model is the 

spatial error DID model (SEM-DID); when β2=γ2=λ=0, the 
model is the spatial autocorrelation DID model (SAR-DID); 

when λ=0, it is the spatial Durbin double difference 
model (SDM-DID). 

2.4 Description of variables 

To explore the impact of low-carbon city pilots on 
industrial pollution, we select industrial SO2 emissions as 
the dependent variable, denoted as SO2 The 

independent variable is DID, whose coefficient 
represents the policy effect. This paper also adds control 

variables, including: per capita gross domestic product 
(PGDP); the proportion of the secondary industry in GDP 
(second), which represents the industrial structure; the 

number of industrial enterprises with fixed assets over 5 
million CNY, denoted as inQ; the total population, which 
is denoted as pop; and the per capita investment in fixed 

assets, which is denoted as fix. To further test the 
mechanism, this paper also collects data on intermediary 

variables, respectively: the number of foreign direct 
investment enterprises (FDI), representing foreign direct 
investment; and the number of green innovation patents 

authorized per 10,000 people (patent), representing 
green technological innovation. The descriptive statistics 

of the variables are shown in the table 1: 
Table 1 Descriptive statistics of variables 

 N Mean SD Min Max 

SO2 2680 56491 55146 759 682922 
DID 2680 0.192 0.394 0 1 

PGDP 2680 39735 30211 99 467749 
second 2680 49.68 10.21 14.95 85.08 

pop 2680 448.5 314.6 18.14 3392 
fix 2680 28208 23072 958.6 219393 
inQ 2680 1352 1788 20 18792 

FDI 2639 124.0 367.0 0 4773 
patent 2616 0.380 0.866 0 15.18 
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3. RESULTS AND DISCUSSION 

3.1 Baseline regression  

To verify whether low carbon cities policy can 
reduce SO2 emissions, we conduct the OLS regression 
and the two-way fixed-effects regression, and the results 

are shown in columns (1) and (2) of Table 2. The 
coefficients of the DID are negative, which indicates that 
the pilot policy reduces the emissions. However, the 

results of the two-way fixed effects model are not 
significant, indicating that the model may have 

estimation bias. The previous analysis shows that the 
low-carbon city pilot not only affects the local economic 
structure but also affects the neighboring cities, so the 

spatial measurement model is further considered in 
columns (3)-(6). We compare the three spatial models of 
SAR, SDM, and SEM and test them to determine the 

specific form of the spatial model Column (3) is the 
spatial autoregressive model and column (4) is the 

spatial error model. Both the LR test and Wald test 
results indicate that the spatial Durbin model is better for 
estimation. Therefore, we use the two-way fixed effects 

spatial Durbin model as the regression model. 
Table 2 Baseline regression 

 (1) (2) (3) (4) 
 SO2 SO2 SO2 SO2 

DID -8284.4*** -3799.2 -3663.6* -3548.4* 
 (2332.3) (2094.2) (1753.1) (1751.0) 

W*DID     
     
_cons -60944.9*** 85373.7***   
 (4938.3) (18654.8)   

Controls Yes Yes Yes Yes 

Time No Yes Yes Yes 
City  No Yes Yes Yes 

Random No No No No 

Hausman     
LR test   4.66* 4.16* 
Wald   4.67* 4.90* 

N 2680 2680 2680 2680 

R2 0.306 0.869 0.125 0.124 

Note: Robust standard errors in parentheses. ***, **, and 
* indicate significance level at 1%, 5%, and 10%, 

respectively. 

3.2 Robustness test  

The basic assumption of the DID model is that the 

treatment and control groups had a similar trend before 
the implementation of the policy. We conduct a parallel 
trend test to ensure the robustness of the results. Based 

on the principle of the event study method, the test is 

conducted according to the following formula based on 
SDM-DID: 
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where Dj is a set of dummy variables. When j>0, it 
represents the j year after the start of the pilot. When j 

<0, it represents the |j| year before the start of the pilot.  
The results are shown in Fig. 2, where the estimated 

coefficients are not significant in years before the 
implementation of the policy, indicating that there is no 
significant difference in the trend of the treatment group 

and the control group before the implementation of the 
policy. 

 
Fig. 2 Parallel trend test 

We conduct a placebo test by setting the treatment 
group randomly repeated 500 times, and the results are 
shown in Fig. 3. The vertical reference line is the 

estimated coefficients of the spatial Durbin model, and 
the horizontal reference line is the P-value of 0.05. The 

results show that the coefficients are concentrated 
around 0. The distribution of coefficients' P-values is 
mostly over 0.05, suggesting that it passes the placebo 

test. 

 
Fig. 3 Placebo test 

3.3 Mechanism analysis 

We conduct mechanism tests with a mediation 
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effects model. The direct effect coefficient in column (1) 
is significantly negative, indicating that the pilot policy 

significantly reduced local industrial enterprises. The 
indirect effect coefficient is significantly positive, 

indicating that the pilot policy increased industrial 
enterprises in neighboring areas. Column (2) shows that 
the number of industrial enterprises is positively related 

to industrial SO2 emissions. Combined with columns (1)-
(3), the results indicate that the pilot policy can reduce 
local SO2 emissions, but leads to the transfer of industrial 

enterprises, which increases SO2 emissions in 
neighboring places. Columns (4)-(6) test the mediating 

effect of foreign direct investment. Due to missing data, 

only two-way fixed effects regression is added.  A 
similar analysis can be applied according to the 

significance of the coefficients: the pilot policy 
significantly reduces foreign direct investment, thereby 

reducing industrial SO2 emissions. Columns (7)-(9) is the 
mediating effect of green technology innovation. The 
results show the pilot policy to promote green 

technology innovation and thus reduce industrial sulfur 
dioxide emissions. The above results indicate that the 
low-carbon city pilot policy can lead to SO2 reduction 

mainly through three mechanisms. 
 

 
Table 3 Mechanism analysis 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 maQ SO2 SO2 FDI SO2 SO2 patent SO2 SO2 

did -245.0***  -4034.6* -16.65***  -4034.6* 0.235***  -4776.8* 

 (36.71)  (1760.0) (4.904)  (1760.0) (0.0433)  (2212.9) 
inQ  6.100*** 5.297***       
  (0.891) (0.918)       

FDI     50.29* 48.92*    
     (23.13) (22.98)    
patent        -4356.3* -3968.7* 

        (1840.1) (1817.7) 

W*did 56.32 7051.1* 7783.1*       

 (75.97) (3593.6) (3602.3)       
direct -244.0*** -68.82 -4051.7*       

 (37.74) (54.47) (1807.3)       
indirect 63.79* 6784.7* 7585.0*       
 (72.81) (3335.5) (3561.0)       

total -180.2* 6715.9* 3533.3       
 (79.32) (3305.3) (3876.6)       

Control Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Time Yes Yes Yes Yes Yes Yes Yes Yes Yes 

City Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 2680 2680 2680 2639 2639 2680 2616 2616 2616 

R2 0.089 0.143 0.126 0.987 0.871 0.126 0.815 0.868 0.868 

Note: Robust standard errors in parentheses. ***, **, and * indicate significance level at 1%, 5%, and 10%, respectively. 
 
 

4. CONCLUSIONS 
This paper focuses on the low-carbon city policy and 

tests the reduction effect of industrial SO2 emissions. 
Combining the time-varying DID model and the spatial 

Durbin model, we further conduct the robustness tests 
such as the parallel trend test, and the placebo test. We 
apply the mediating effect model to test the mechanism 

The following conclusion is drawn: the pilot low-carbon 
city can significantly reduce local SO2 emissions, but has 

a spillover effect on neighboring emissions. The reason 

for this is that the pilot policy has led to the withdrawal 
of industrial enterprises from the local market and their 

transfer to the neighboring market. The low-carbon city 
pilots, although intended to reduce carbon dioxide 

emissions, have also reduced industrial SO2 emissions by 
influencing foreign direct investment and green 
technology innovation, realizing synergies between 

carbon reduction and pollution reduction. 
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