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Abstract— Over the past decade, the number of wildfire 

has increased significantly around the world, especially in the 

State of California. The high-level concentration of 

greenhouse gas (GHG) emitted by wildfires aggravates 

global warming that further increases the risk of more fires. 

Therefore, an accurate prediction of wildfire occurrence 

greatly helps in preventing large-scale and long-lasting 

wildfires and reducing the consequent GHG emissions. 

Various methods have been explored for wildfire risk 

prediction. However, the complex correlations among a lot of 

natural and human factors and wildfire ignition make the 

prediction task very challenging. In this paper, we develop a 

deep learning based data augmentation approach for wildfire 

risk prediction. We build a dataset consisting of diverse 

features responsible for fire ignition and utilize a conditional 

tabular generative adversarial network to explore the 

underlying patterns between the target value of risk levels and 

all involved features. For fair and comprehensive 

comparisons, we compare our proposed scheme with five 

other baseline methods where the former outperformed most 

of them. To corroborate the robustness, we have also tested 

the performance of our method with another dataset that also 

resulted in better efficiency. By adopting the proposed 

method, we can take preventive strategies of wildfire 

mitigation to reduce global GHG emissions. 

Keywords—wildfire prediction, deep. learning, 

generative adversarial network. 

I. INTRODUCTION  

As one of the most destructive events for both human and 
nature, wildland fire is a major source responsible for GHG 
emission. It poses a great threat to many aspects of our life, 
ranging from poor air quality and loss of habitation to the 
damage of lots of valuable assets. The frequency of wildfires 
has increased by a factor of four compared to 1970 which 
largely owes to climate change. It is estimated that annually 
between 350 and 450 million hectares of forest and grassland 
are burnt by wildfires [1]. It is evident that global warming 
contributes to the increasing number of wildfires, which turn 
the forests as carbon sources instead of being carbon sinks.  

 In general, wildfires emit 5 to 30 tonnes of carbon per 
hectare; therefore, making the annual carbon production 
between 1.75 and 13.5 billion metric tonnes. Zooming into 
California, one of the worst sufferers from wildfires, got 4.2 
million acres of land burnt in 2020 alone (which is roughly 4% 
of the total area of the state) [2]. According to Global Fire 
Emission Database (GFED), California wildfires had 
generated more than 91 million metric tons of GHG, which is 
25% more than annual emissions from fossil fuels in the state.  

 Forests capture carbon from the atmosphere in the soils 
and trees. When they burn, a large amount of carbon gets 
released. This GHG emission from wildfires forms a vicious 
cycle represented in Fig. 1. More emission results in more 
change in the climate and increases the temperature. A rise in 
temperature makes the vegetation dryer, more flammable, 
susceptible for burning for longer period and lessening the 
growth of newer vegetation, thus creating a feedback loop of 
increased GHG emission.  

In order to curb climate change, we need to reduce the 
incidence of wildfires that shoots up the amount of GHG in 
the environment. For doing so, we must be able to accurately 
predict the occurrences of fire events. This is the main 
objective of this paper.  

Researchers from different disciplines have explored 
various ways to forecast fire locations. Preisler et al. produced 
a map of potential fire distribution of the whole USA using 
gridded satellite data and surface observation [3]. Later they  

 

 

Fig. 1: Loop between fire events and GHG emission. 
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performed a spatially explicit forecast for modelling the  
probability of a large wildland fire [4]. Both of the papers have 
used remote sensing data to make the prediction in 
conventional approach. Gasull et al. utilized wireless sensor 
networks to predict the risk of a wildfire but this is not an 
effective way in terms of both cost and precision [5]. Machine 
learning (ML) techniques have also been used in prediction 
tasks. One of the recent works by Nadeem et al. used a Lasso-
logistic framework for human and lightning caused forest fire 
occurrences [6]. Sayad et al. have shared a new dataset 
consisting of some of the underlying features causing wildfire 
and used some baseline ML algorithms for predicting fire 
locations [7]. Another method for training deep neural 
networks using a validation-loss (VL) weight selection 
strategy on imbalanced datasets have been used by Langford 
et al. to detect wildfire events [8]. A physics-assisted recurrent 
neural network model for mapping fuel moisture content was 
introduced by Rao et al. to characterize wildfire risk [9]. None 
of these works has considered all the important aspects 
together in a holistic manner that are responsible for initiating 
a fire. This relationship is indeed very complex as there are a 
lot of features and they are interdependent on each other. 
Unraveling this complex relation is the key to a successful 
prediction of fire occurrences. 

     Deep learning is gaining much popularity in identifying 
complex patterns due to its supremacy of accuracy when 
trained with a massive amount of data. In this paper, we have 
investigated the underlying relation between a wildland fire 
and its corresponding factors to predict the fire locations one 
day ahead. We have also checked the performance of our 
proposed method on another dataset used by [7] in order to 
prove the efficacy of our approach. The major contributions 
of our paper are outlined as follows: 

• We construct a dataset that consists of the relevant 
features (meteorological factors, vegetation status, 
topology and proximity to nearby power lines) 
combined together to correctly identify the causation 
of a wildfire in a comprehensive way.  

• We utilize a state-of-the-art deep learning technique, 
generative adversarial network (GAN) for 
conditional generation of tabular data to generate 
sufficient inputs from the original dataset for 
properly train ML models. To the best of our 
knowledge, no one has implemented a GAN based 
technique in a dataset that has a wide variety of fire 
risk elevating factors that gives a more accurate 
prediction of wildfire occurrences. 

    The remainder of this paper is organized as follows. Section 
II provides the details of our dataset construction. In Section 
III, the architecture of the conditional tabular GAN (CTGAN) 
is discussed. Simulation studies are presented in Section IV. 
Finally, Section V discusses how this prediction can be 
utilized in reducing carbon footprints along with the future 
work. 

II. DATA SET CONSTRUCTION  

A. Set of features   

For predicting fire locations, we first need to analyze the 
complex dynamics between different contributing factors and 
how they lead to a fire ignition. Discovering that part is not an 
easy task as there are a lot of reasons by which a fire can be 

initiated. So, in order to model the relationship, we have 
decided to build a dataset from scratch consisting of a wide 
variety of features. Among them, weather or meteorological 
factors have a direct, strong causation. Also, it is evident from 
the fact that over the past few decades, climate change has 
given rise to the frequency of all sizes of fires, large, small and 
big, all over the world. We have collected the data for 
temperature, precipitation, surface pressure, direction and 
speed of wind and humidity of a specific geographical 
location. Besides that, naturally occurring wildfires can easily 
be sparked by dry weather and droughts since dry vegetation 
acts as a flammable fuel while warm temperature encourages 
combustion. Therefore, vegetation indices play a prominent 
role in determining fire hotspots. We have gathered the data 
for 2 such indices, which are normalized difference vegetation 
index (NDVI) and enhanced vegetation index (EVI). Both 
weather and vegetation data can be acquired from weather 
stations placed in certain locations. However, a big issue of 
station based data is that the value of a particular weather 
variable is assumed constant over a wide range of areas under 
the coverage of that station. Hence, precise data may not be 
available because we do not have so many stations for 
reasonably spaced locations. Installing lots of sensors can be 
a solution that is too expensive for many remote rural areas. 
By contrast, utilizing satellite images facilitate this purpose by 
maintaining a good trade-off between precision and cost.  

Another important component that influences the fire 
behavior of a region is the topography. It is the physical 
feature of a place which is generally static (unless changed by 
men or some natural  disasters like hurricane, tornado etc.) and 
is opposite of weather which is ever changing. However, it 
interacts with wind speed and direction interestingly and thus 
eventually impacts fire initiation. In the slopes, the wind 
usually blow up during the day and less dense air (reflected by 
the surface) rises up along the slope. Hence, the steeper the 
slope, the quicker the hot air will flow uphill and preheat the 
flammable fuel to its ignition temperature. Thus the uphill 
zones are more prone to fire ignition during the daytime. The 
scenario is opposite at night when the cooler winds start to 
flow downhill. For this reason, we have incorporated the 
topographic information of the region in our dataset. 

Last but not the least, one of the common causes of 
wildfire ignition is electrical equipment and power line 
failures. High temperature arcing created during a high 
impedance fault can ignite a proximate vegetation and other 
combustible materials. Other than that during high wind, trees 
and branches may fall across power lines and can result in two 
conductors coming in contact with each other. It produces 
high energy arcing and ejects hot metal particles that can 
eventually lead to a wildfire ignition. Considering this, we 
have included the distance between fire locations and the 
nearest power lines in our dataset to account for the chances 
of fire ignition due to power system equipment failure.  

The complete set of features used in our constructed 
dataset is shown in  Fig. 2. 

B. Data collection 

    Two most destructive wildfires in CA, ̀ Camp' and ̀ Tubbs', 

respectively occurred in Butte county, in November 2018 and  

in Napa, Sonoma county in October, 2017 were used as the 

test case for our dataset. To start with, we collected the 

location of the fire points (latitude-longitude) from the earth  
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Fig. 2: Features used in our dataset. (DEM= digital elevetaion model, NDVI= 

normalized difference vegetation index, EVI= enhanced vegetation index). 

 

observation data by NASA that used MODIS- Terra 

(MOD14) product to locate the fire pixel [10]. After that we 

projected those geographic points in QGIS and added some 

other points those are not on fire. In the dataset, we labeled 

these points as ‘No fire’ while the points derived from [10] 

are labeled as ‘Fire’. In total, there are 849 data points where 

420 data points hold the ‘Fire’ label while the rest 429 points 

are labeled as ‘No Fire’. As we are making a day ahead 

forecast, satellite images for the previous day containing the 

weather parameters i.e. temperature, specific humidity, 

precipitable water vapor, surface pressure, eastward and 

north wind, were collected from MERRA-2 (Modern-Era 

Retrospective analysis for Research and Applications version 

2) for both the ‘Fire’ and ‘No Fire’ points [11]. The 

vegetation indices for the same locations were collected from 

USGS that used Landsat 8 satellite, and having a 30m spatial 

resolution [12]. Digital elevation model (DEM) was used to 

get the topographic data of the points from USGS as well 

[13]. Finally, the information regarding the location of 

electric transmission lines were acquired from California 

Energy Commission [14]. 

 

C. Data processing    

     The next step was to process the satellite images (in .tif 

format) and extract the pixel values to get different weather 

features (the same applies for vegetation indices and DEM). 

We used the ‘rgdal’ library of RStudio for image processing 

and value extraction. The Landsat-8 images for vegetation 

has 9 spectral bands among which band 2 (Visible Blue), 

band 4 (Visible Red) and band 5 (Near InfraRed or NIR) was 

used to extract NDVI and EVI. 

The NDVI and EVI are calculated from these individual 

measurements according to the following equation: 

 

 
 

III. PREDICTION USING CTGAN 

     Traditional ML approaches such as naive Bayes, decision 

trees (DF), support vector machines (SVM) often provide 

simple solutions to various classification tasks. However, 

disentangling the complex dynamics between wildfire 

occurrence and its underlying factors is a challenging task, 

which requires better techniques along with more data. Deep 

learning (DL) is such a technique where the ‘learning’ part 

happens in the hidden layers of a neural network and `deep' 

refers to the number of those layers. As the ‘depth’ of the 

network increases, the more insights about the prediction 

analysis can be found. One of the biggest hurdles towards 

utilizing these models is the limited number of data that need 

to feed into the network. We use remote sensing data for 

wildfire prediction. In this case, there is no simple way to 

extract more data from a high resolution source for a given 

location within a specific time. Hence, in order to enlarge the 

dataset, we need to generate synthetic data from the original 

set via an appropriate data augmentation technique. 

 

      Generative adversarial network (GAN) is a DL based 

supervised learning approach, which discovers and learns the 

pattern in a dataset by its own and produces new data 

samples. Typically, a basic GAN model consists of two sub-

networks: generator and discriminator. The generator 

generates new samples while the discriminator aims at 

distinguishing fake data points from real ones. Training a 

GAN is a minimax game: 

 

 
where the first term is entropy that the data from real 

distribution pdata(x) passes through the discriminator D. The 

second term is entropy that the data from random input pz(z) 

passes through the generator G that generates a fake sample, 

which is then passed through the discriminator D to identify 

the genuineness. Overall, the discriminator aims to maximize 

the function V while the generator tries to minimize it. 

Essentially, the Jensen-Shannon divergence (or many other 

possible entropy metrics) between generator and data 

distributions is minimized.  The inherent competition 

between the generator and the discriminator drives both to 

improve, until fake data are indistinguishable from genuine 

ones. As a side effect, the generator can draw high-quality 

realistic samples. 

 

      There are different types of GANs used for a wide variety 

of applications. Chen et al. proposed InfoGAN - an 

information-theoretic extension to the GAN that is able to 

learn disentangled representations in an unsupervised manner 

[15]. WGAN is another variant that uses Wassertain distance 

in the loss function [16]. Another important adaptation is 

conditional generative adversarial networks (CGAN) that 

uses an extra label information as an input to condition on 

both the generator and discriminator and can generate new 

samples conditioned on class labels [17].  

 

      Although GAN offers a great flexibility in modeling 

distributions of image data, there are certain challenges when 

it comes to model tabular format of data containing a mixture 

of discrete and continuous columns. First, pixel values of 

images usually follow a Gaussian distribution which can be 

normalized and modeled by using a min-max transformation. 

However continuous values in tabular data do not follow such 

a distribution and the min-max transformation can lead to the 
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issue of vanishing gradient. Second, the continuous columns 

may have multimodal distributions. It has been shown that 

the vanilla version of GAN cannot model all modes on a 

simple tabular dataset [18]. Hence, modeling continuous 

columns is a challenging task. 

A. Conditional tabular GAN   

To overcome the aforementioned challenges, Xu et al. 
proposed a conditional tabular GAN (CTGAN) model, which 
uses mode-specific normalization to combat the non-Gaussian 
and multimodal distributions of continuous columns and a 
conditional generator to accurately model the discrete 
columns in a tabular dataset. The following steps are required 
to implement the mode-specific normalization [19]. 

1. For each column of the dataset, apply a variational 
Gaussian mixture model (VGM) to estimate the 
number of modes Ki and fit a Gaussian mixture. Let 
cj,i denote the j-th element of column Ci. Then, the 
learned Gaussian mixture model is given as 

 

 Where 𝜇k  and 𝜙k are the weight and standard deviation 
of the mode 𝜂k for k = 1, 2 ….Ki.  

2. For each value of cj,i, calculate the probability of it 
coming from each mode. The probability densities 
are computed as  

 

3. Based on the probability densities, sample a mode to 
normalize the value. Specifically, cj,i is represented 
by a one-hot encoded vector 𝛽j,i representing the 

sampled mode and a scalar  to represent 
the value within the k-th picked mode.  

In general, any row rj can be represented as  

 

where N is the number of continuous columns and denotes the 
concatenation operator. This mode specific technique ensures 
that the generated synthetic data Tsyn follows the same 
distribution as the original data Ttrain. The authors also verified 
that a classifier trained by Tsyn achieved similar performance 
on Ttest as a classifier learned on Ttrain. 

For discrete columns, a conditional generation process is 

implemented to generate a new sample  based on a specific 
category of discrete columns. That is, 

 

where ℙG is the learnt distribution, Di* is the i-th discrete 
column, and k* is one of the categories in that discrete column. 
The conditional generator must learn the conditional 
distribution well enough from the real data such that 

.  

This can be achieved by implementing a conditional vector, 
training by a sampling method, and minimizing the generator 
loss; see details in [19].  The overall CTGAN model is given 
in Fig. 3, where there are N number of continuous columns 
and M discrete columns. In our task, there are no categorical  

Fig. 3: The CTGAN model: without loss of generality, it is assumed that the 
category k* in the first discrete column d1 is selected as the condition to 
generate Tsync.  

features. The only discrete column contains the labels 
indicating fire or no fire. 

B. Network architecture of CTGAN 

     Both the generator and the discriminator are fully 

connected neural networks capturing all possible correlations 

among all columns. There are two hidden layers in the 

generator and the discriminator, respectively. The rectified 

linear unit (ReLU) is used as the activation function in the 

generator while the leaky ReLU is used in the discriminator. 

There is another synthetic row representation layer in the 

generator after the two hidden layers.  The scalar value in that 

layer 𝛼i is generated by tanh function while the mode 

indicator βi is generated by the Gumbel- softmax continuous 

distribution, which can be smoothly annealed into a 

categorical distribution. 

IV. RESULTS   

We first divide the constructed dataset in Section II into 
training and test set in a ratio of 70/30. The training set is used 
as the input of the CTGAN model. Then, the augmented 
dataset (i.e., generated synthetic data by the CTGAN and the 
original training set) is used to train all the ML models. 
Finally, we evaluate all models by using the original test set. 
The overall process is shown in Fig. 4. 

     To show the merit of our proposed approach of CTGAN-
based neural network (NN), we compare it with four other 
baseline models: decision tree (DT), random forest (RF), 
gradient boosting (GB), support vector machine (SVM), 
which are implemented by using Scikit-Learn 0.23.2. The NN 
is trained by using Tensorflow v2.0.  The command 
‘sklearn.model-selection.GridSearchCV' is used for tuning 
hyperparameters whose best values are given in Table I. 

 

Fig. 4: The segmentation of the training and test datasets. 
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TABLE I.  THE SET OF TUNED HYPERPARAMETERS. THE BOLD VALUES ARE 

THE BEST ONES WITH GRID SEARCH HYPERPARAMETER TUNING 

Model Hyperparameters 

RF 

Number of estimators (50,100,200,600) 

Maximum depth of each tree (5,10,15,20) 

Minimum samples leaf (1,2,3,5) 

Minimum samples split (1,3,5,10,15) 

SVM 

Kernel (RBF, linear, polynomial) 

Penalty parameters C (0.1,1,10) 

Gamma 𝛾 (0.1,1,10) 

NN 

Epochs (50,100,200,300) 

Batch size (2,8,16,32,64) 

Number of neurons in each layer (5,10,20) 

Learning rate (1e-1, 1e-2, 1e-3,1e-4) 

Optimizer (Adam, SGD) 

Dropout rate (0,0.1,0.2) 

 

Fig. 5 shows the results of classification accuracy tested 
on our constructed dataset. It can be seen that the proposed 
CTGAN augmented NN achieves the best accuracy. In 
addition, we find that except for DT and SVM, the remaining 
three models with the CTGAN-augmented technique 
outperform their baseline counterparts. 

To fully measure the performance of all models, we also 
leverage different metrics including the followings: 

 

where tp, fp, and fn are the numbers of true positives, false 
positives, and false negatives, respectively. Instead of using 
the vanilla version of these performance metrics, their 
counterparts of weighted average are used.   For example, the 
weighted precision is defined as 

 

 

Fig. 5: Performance comparison of baseline models and the proposed 
approach tested on the dataset that is described in section II. 

TABLE II.  PERFORMANCE COMPARISON OF WEIGHTED PRECISION, RECALL 

AND F1 SCORE TESTED ON THE DATASET IN SECTION II 

 Baseline Baseline+CTGAN 

Models Precision   Recall     F1 Precision   Recall      F1 

DT 0.69         0.69        0.69    0.69        0.69       0.69 

RF 0.78         0.78        0.78    0.80        0.79       0.79 

GBM 0.71         0.71        0.71    0.78        0.77       0.76 

SVM 0.79         0.77        0.77    0.73        0.70       0.70 

NN 0.78         0.78        0.78    0.78        0.79       0.79 

 

where SF and SNF are the number of samples in ‘Fire’ and ‘No 
fire’ class, respectively. PF and PNF denote the precision for 
the two classes. The weighted average of recall and F1 score 
are defined in a similar way. All results are summarized in 
Table II that show the supremacy of CTGAN-based RF and 
NN. 

     Besides our newly constructed dataset, we also evaluate the 
performance of all those models in another dataset given in 
[7]. The dataset has two classes (‘fire’ and ‘no fire') with three 
features: burnt area, land surface temperature (LST), and 
NDVI. The result of test accuracy is presented in Fig. 6. 
Except for RF, all the models yield better results when trained 
with the augmented dataset. The values of the weighted 
precision, recall and F1 score are shown in Table III. 
Compared with the baseline cases, we can see that the 
proposed CTGAN-based approach helps improve the 
weighted recall and F1 score for all models except for the F1 
score of RF. 

Fig. 6: Performance comparison between baseline models and our proposed 
model on another dataset used by [7]. 

TABLE III.  PERFORMANCE COMPARISON OF WEIGHTED PRECISION, RECALL 

AND F1 SCORE TESTED ON THE DATASET IN [7] 

 Baseline Baseline+CTGAN 

Models Precision   Recall     F1 Precision   Recall      F1 

DT 0.68         0.70        0.68    0.69        0.71       0.70 

RF 0.72         0.73        0.71    0.75        0.73       0.68 

GBM 0.71         0.69        0.62    0.70        0.71       0.69 

SVM 0.74         0.67        0.55    0.67        0.68       0.68 

NN 0.71         0.68        0.58    0.70        0.71       0.70 
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V. CONCLUSION   

In this paper, we propose a GAN-based approach to 

effectively predict wildfire risk by analyzing the underlying 

patterns among various features of fire ignition. First, we build 

a new dataset that consists of meteorological factors, 

vegetation indices, topology and distance from nearest 

powerline. Then, CTGAN is capitalized on to generate high-

quality realistic data to facilitate different ML algorithms for 

better prediction performance. To show the effectiveness of 

our proposed approach, a comparative analysis is performed 

with five ML models, where the proposed CTGAN-based 

random forest and neural networks yield the best classification 

results, as tested on two different datasets. 

Leveraging the proposed wildfire prediction approach, we 

can take several preventive and mitigation measures. For 

example, human activities should be restricted around 

susceptible fire locations since many large fires can be ignited 

by human ventures. Authorities can also carry out necessary 

vegetation management tasks like clearing bushes, 

performing prescribed burns, pruning risky branches of trees 

to prevent fires sparked by electric power infrastructure. 

During the preemptive shut down of power to prevent 

wildfire, utilities can also undertake the allocation of 

renewable energy fueled microgrids in order to meet the 

curtailed demand of their customers and at the same time, 

mitigating GHG emissions. A few interesting research 

directions open up towards extending the proposed approach 

in this paper, we plan to conduct feature engineering that 

involves human activities, as well as wildland-urban interface 

on the projected rate of migration to develop a more effective 

and robust model for wildfire prediction. 
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