
Paper ID APEN-MIT-2021_61 

Applied Energy Symposium: MIT A+B 

August 11-13, 2021 • Cambridge, USA 

 

 

Optimized Autonomous Driving: an Energy 

Component Analysis 
 

Eduardo Mello  

Department of Electrical Engineering  

University of Notre Dame 

Notre Dame, USA 

emello@nd.edu

Matthew Peine  

Department of Electrical Engineering  

University of Notre Dame 

Notre Dame, USA 

mpeine@nd.edu

Peter Bauer  

Department of Electrical Engineering  

University of Notre Dame 

Notre Dame, USA 

pbauer@nd.edu 

Abstract—An energy components analysis for stop-to-

stop drive segments is provided. In particular, the 

components of rolling resistance, air drag, and kinetic energy 

are examined for conventional and optimal segments. It is 

shown that in energy-optimal driving, the maximum kinetic 

energy is reached early in the drive segment and then it is 

converted into work to overcome air drag and rolling 

resistance; in a sense, it is recovering kinetic energy. In 

conventional profiles, the maximum speed is attained late in 

the profile and thus cannot be used to cover much of the air 

drag and rolling resistance energy cost. The role of the initial 

acceleration is shown to play a key role, especially for short 

segments. These results are illustrated through several 

simulation examples. 

Keywords—optimization, energy, autonomous driving, 

acceleration 

I. INTRODUCTION 

Recent advances in autonomous driving, electric 
powertrains, and situational awareness acquisition provide 
unprecedented opportunities for maximizing sustainability in 
transportation. The high efficiency of electric powertrains 
(from battery to wheel), the ability to execute and generate 
optimal speed trajectories due to autonomous driving systems, 
and the ability to acquire real-time traffic and infrastructural 
data (via V2X or internal sensor suites) set the stage for many 
advances in the area of transportation, opening a new era of 
transportation. Many results that use infrastructural and 
vehicle information to optimize energy already exist; only 
some of the many recent results obtained can be mentioned 
here. Most notably, energy optimal speed control systems for 
signalized arterials have been proposed by several authors. 
These systems aim to achieve energy savings by minimizing 
the number of stops at traffic lights, reducing idling times 
[1,2]. These strategies are often called “green driving” or 
“eco-driving.” These algorithms can also consider the length 
of intersection queues [3], or vehicle dynamics throughout the 
entire time horizon [4]. 

This paper will further pursue the approach in [5,6], which 
showed that significant efficiency gains are possible if stop-
to-stop trajectories are optimized using constraints on average 
speed, maximum acceleration and deceleration, and possibly 
additional constraints. While [5,6] focused on the efficiency 
gains as a function of infrastructural and vehicle parameters, 
the research did not explain why such high energy savings 
(sometimes around 50-60%) are possible. It also did not 

investigate the role that acceleration plays in such energy 
improvements. These two issues are closely related, and this 
paper will shed some light on the interdependency of initial 
acceleration, total energy savings or efficiency gains, and the 
energy components that contribute to these savings. 

This paper will provide fundamental insights into how the 
three different energy components caused by air drag, rolling 
resistance, and kinetic energy depend on the initial 
acceleration. A theoretical analysis as well as a simulation 
study will highlight the relationship between initial 
acceleration and these energy components. It will be shown 
that a high initial acceleration capability is advantageous for 
improving energy efficiency, which seems counterintuitive 
when considering conventional ICE vehicles. 

In section 2, the utilized energy, efficiency, and 
optimization models will be introduced. Section 3 provides an 
energy component analysis from an analytical as well as a 
simulation point of view. In section 4, the dependency of 
transportation energy on initial acceleration is shown.  Finally, 
section 5 provides conclusions and an outlook. 

II. MODELS 

A. Energy models and assumptions 

The energy consumption of an electric vehicle is estimated 
based on the wheel power 𝑃𝑤ℎ𝑒𝑒𝑙 , which can be described as 
the sum of all power absorbing components acting on the 
vehicle (1) [5,7]. Those components comprise the acceleration 
power 𝑃𝑎𝑐𝑐  (2), power necessary to overcome air-drag 𝑃𝑎𝑖𝑟  
(3), power necessary to overcome rolling resistance 𝑃𝑟𝑜𝑙𝑙  (4), 
and power necessary for hill-climbing 𝑃ℎ𝑖𝑙𝑙  (5). For the 
analysis presented below, a flat surface was considered, i.e., 
no hill-climbing, and zero wind speed, i.e., 𝑤(𝑡) = 0. 

 𝑃𝑤ℎ𝑒𝑒𝑙(𝑡) = 𝑃𝑎𝑐𝑐 + 𝑃𝑎𝑖𝑟 + 𝑃𝑟𝑜𝑙𝑙 + 𝑃ℎ𝑖𝑙𝑙  () 

 𝑃𝑎𝑐𝑐 = 𝑚𝑣(𝑡)𝑣̇(𝑡) () 

 𝑃𝑎𝑖𝑟 =
1

2
𝐶𝑑𝐴𝜌(𝑣(𝑡) + 𝑤(𝑡))

2
𝑣(𝑡) () 

 𝑃𝑟𝑜𝑙𝑙 = 𝑚𝑔𝑓𝑟𝑣(𝑡) () 

 𝑃ℎ𝑖𝑙𝑙 = 𝑚𝑔𝑠𝑖𝑛(𝛼)𝑣(𝑡) () 

Above, the mass, speed, acceleration, frontal drag 
coefficient, and cross-sectional area of the vehicle are denoted 
by 𝑚, 𝑣 , 𝑣̇, 𝐶𝑑 , and 𝐴, respectively. The vehicle mass also 
models the driveline inertia, which appears as a constant 
additional mass contribution, i.e., a single gear transmission is 
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assumed [8]. 𝑤(𝑡) is the component of wind speed aligned 
with the vehicle’s velocity vector. The air density is denoted 
by 𝜌 , 𝑓𝑟  is the rolling resistance coefficient, and 𝑔  is the 
gravitational acceleration. 

The battery power drawn is then obtained by multiplying 
the power at the wheels by the total drivetrain efficiency (6). 

 𝑃𝑏𝑎𝑡(𝑡) = {
𝜂𝑓𝑟𝑤(𝑇, 𝜔)

−1𝑃𝑤ℎ𝑒𝑒𝑙(𝑡) for 𝑃𝑤ℎ𝑒𝑒𝑙(𝑡) ≥ 0  

  𝜂𝑟𝑒𝑔(𝑇, 𝜔)𝑃𝑤ℎ𝑒𝑒𝑙(𝑡) for 𝑃𝑤ℎ𝑒𝑒𝑙(𝑡) < 0
 () 

where 𝑃𝑏𝑎𝑡  is the power at the battery, 𝜂𝑓𝑟𝑤 is the efficiency 

of the vehicle for forward power flow, 𝜂𝑟𝑒𝑔 is the efficiency 

in reverse power flow, 𝑇 is the torque of the motor, and 𝜔 is 
the rotational speed of the motor. These efficiencies represent 
the complete powertrain efficiency, including the mechanical 
drivetrain and battery efficiency, which, as shown in [8], have 
minimal variations under different operating conditions. 

In the following sections, the vehicle efficiency will be 
obtained from the torque- and speed-dependent efficiency 
map shown in Fig. 1. Each vehicle will utilize a scaled version 
of this map that matches the vehicle’s maximum torque and 
motor speed. This efficiency map is derived from a Nissan 
Leaf’s combined motor and inverter efficiency [9].  

Finally, the total energy drained from the battery, 𝐸 , is 
given by (7) where 𝑡𝑖 and 𝑡𝑓 are the initial and final time of 

drive segment, respectively.  

 𝐸 = ∫ 𝑃𝑏𝑎𝑡(𝑡)𝑑𝑡
𝑡𝑓
𝑡𝑖

 () 

B. Optimization models and assumptions 

To find the optimal speed profile between two consecutive 
stops, e.g., a segment between traffic lights or stop signs, of 
an urban scenario, an optimization problem with energy as the 
only parameter in the cost function will be solved. This 
optimization problem is formulated below (8). 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑣(𝑡)

∫ 𝑃𝑏𝑎𝑡(𝜏)𝑑𝜏
𝑡𝑓
0

  

 𝑠. 𝑡.
∫ 𝑣(𝜏)𝑑𝜏
𝑡𝑓
0

𝑡𝑓
= 𝑣̅ (8) 

 0 ≤ 𝑣(𝑡) ≤ 𝑣𝑚𝑎𝑥   

 𝑣̇𝑚𝑖𝑛  ≤ 𝑣̇(𝑡) ≤ 𝑣̇𝑚𝑎𝑥  

In this optimization, the average speed of the vehicle 𝑣̅, 
speed limitations, and acceleration limits are defined as 
constraints. In (8), 𝑡𝑓  is the total optimization time, 𝑣𝑚𝑎𝑥  is 

the maximum acceptable speed, and 𝑣̇𝑚𝑖𝑛  and 𝑣̇𝑚𝑎𝑥  are the 
minimum and maximum acceptable acceleration values. More 

constraints may have to be imposed, depending on the 
application, e.g., speed boundary conditions. 

III. ENERGY COMPONENT ANALYSIS 

The generation of energy-optimal speed profiles and their 
energy consumption has been studied in [5,6]. However, the 
reason for these large savings has not been analyzed. Here, 
this analysis will be performed by breaking down the energy 
consumption into its power absorbing components. 

These energy-optimal speed trajectories can be divided 
into two different types: three-segment trajectories and four-
segment trajectories. Typically, optimal speed trajectories 
have three distinct segments for short optimized trajectories 
and four segments for longer speed trajectories [5].  Below a 
closed-form approximation of a three-segment optimal speed 
profile will be presented. It is also shown how its energy 
breakdown behaves as vehicle parameters are varied. 

A. Analytical results and the simplified model 

For the case of three-segment optimal speed profiles, the 
closed-form expressions below will be shown to provide a 
good linear approximation of the optimal speed profile (shown 
in Fig. 2). 

For this analysis, the parameter 𝑣̅ represents the average 
speed of the optimal trajectory, 𝑑 the segment length, a𝑎1 =
𝑣̇𝑚𝑎𝑥  the initial acceleration, 𝑎2  the approximated coasting 
deceleration, and 𝑎3 = 𝑣̇𝑚𝑖𝑛  the braking deceleration. The 
indices show the segment number with which the acceleration 
or time is affiliated, e.g., 𝑎1  and 𝑡1 are acceleration and 
duration of segment 1. 

  Based on the integral of the speed profile depicted by 
Fig. 2, the total traveled distance is given by (9). 

 𝑑 =
𝑎1

2
𝑡1
2

⏟
distance
covered 
in 𝑡1

+
2𝑎1𝑡1+𝑎2𝑡2

2
𝑡2⏟        

distance
covered 
in 𝑡2

+
𝑎1𝑡1+𝑎2𝑡2

2
𝑡3⏟      

distance
covered 
in 𝑡3

 (9) 

The total time of the trajectory is defined by (10), where 𝑇 
represents the total travel time. Since the speed trajectory 
starts and stops at zero speed, (11) must also hold. 

 𝑡1 + 𝑡2 + 𝑡3 = 𝑇 =
𝑑

𝑣̅
 () 

 𝑎1𝑡1 + 𝑎2𝑡2 + 𝑎3𝑡3 = 0 () 

With some algebraic manipulation, the expressions (12) to 
(14) for the times 𝑡1, 𝑡2, and 𝑡3 can be obtained. Also, based 
on the average force acting at the wheels of the vehicle, 𝑎2 can 
be defined as shown in (15). 

 𝑡1 =
𝑡2(𝑎3−𝑎2)−𝑎3𝑇

𝑎1−𝑎3
 () 

 

Fig. 1. Example of efficiency map utilized in the optimization. 

 

Fig. 2. Sample trajectory for closed-form approximation of a three-

segment optimal speed profile. 
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 𝑡2 = √
2𝑑(𝑎1−𝑎3)+𝑎1𝑎3𝑇

2

(𝑎1−𝑎2)(𝑎3−𝑎2)
  () 

 𝑡3 = 𝑇 − 𝑡1 − 𝑡2 () 

 𝑎2 = −𝑔𝑓𝑟 −
1

2

𝐶𝑑𝐴

𝑚
𝜌𝑣

2
 () 

Finally, assuming that the vehicle only utilizes energy 
during 𝑡1, the total energy consumption of the trajectory can 
be estimated by (16). This assumption is based on the vehicle 
coasting during 𝑡2 and regenerative braking during 𝑡3. 

 𝐸𝑏𝑎𝑡 =
𝑚𝑎1𝑡1

2

2𝜂
(𝑎1 + 𝑔𝑓𝑟) +

𝐶𝑑𝐴𝜌𝑎1
3𝑡1
4

8𝜂
 () 

In the equations above, 𝜂  is the power train lumped 
forward efficiency. (Regenerative braking efficiency is 
assumed to be zero.) The variables 𝑔, 𝑓𝑟 , 𝐶𝑑 , 𝐴 , 𝜌, and m 
represent the following vehicle and environmental 
parameters: gravitational acceleration, rolling resistance 
coefficient, air-drag coefficient, vehicle’s frontal area, air 
density, and vehicle’s mass, respectively. Finally, the energy 
utilized by the vehicle is denoted by 𝐸𝑏𝑎𝑡 . 

B. Simulations of optimized and conventional trajectories 

 The closed-form approximation approach above was 
applied to segments varying in range from 300 to 800 meters. 
Their estimated energy consumption for a vehicle based on the 
chassis data of a Nissan Leaf is shown in Fig. 3. In this figure, 
the set “Closed-form approximation (estimated energy)” 
represents the results obtained by (16). The set “Closed-form 
approximation (calculated energy)” represents the energy 
consumption calculated based on a linearized version of the 
model described in section II. A. By comparing these two sets, 
one can assert that (16) produces very close approximations of 
the energy consumption of an optimal trajectory, especially 
for short segments. Also, the approximated optimal speed 
trajectories have very similar energy consumption to those 
obtained from the optimization scheme described in section II. 
B, although a little higher. The set “Distilled FTP75” 
represents a speed profile generated from the FTP75 with the 
desired segment length. This set is explained in detail in [5]. 

C. Breakdown of components 

To analyze the origin of the savings obtained from the 
energy-optimal speed trajectories, the work realized by the 
vehicle, i.e., energy at the wheels, was broken down into each 
one of its power absorbing components. The work realized by 
the vehicle does not consider the vehicle’s efficiency, and thus 
each component can be expressed as shown below. The total 
energy necessary to accelerate the vehicle (17), to overcome 
air drag (18), and to overcome rolling resistance (19) is 
described. Since a flat surface is assumed, 𝐸ℎ𝑖𝑙𝑙 = 0. 

 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = ∫ max (0,𝑚𝑣(𝑡)𝑣̇(𝑡))
𝑡𝑓
0

𝑑𝑡 (17) 

 𝐸𝑎𝑖𝑟 = ∫
1

2
𝐶𝑑𝐴𝜌𝑣

3(𝑡)
𝑡𝑓
0

𝑑𝑡 (18) 

 𝐸𝑟𝑜𝑙𝑙 = ∫ 𝑚𝑔𝑓𝑟𝑣(𝑡)
𝑡𝑓
0

𝑑𝑡 (19) 

Equation (20) expresses the total energy that can possibly 
be recaptured, 𝐸𝑟𝑒𝑐𝑎𝑝 . This includes energy dissipated by the 

brakes and the energy sent back to the battery. 

 𝐸𝑟𝑒𝑐𝑎𝑝 = ∫ |min(0, 𝑃𝑤ℎ𝑒𝑒𝑙(𝑡))|
𝑡𝑓
0

𝑑𝑡 (20) 

The total energy, at the wheels, recovered to overcome air 
drag and rolling resistance is then given by (22) 

 𝐸𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 = 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 − 𝐸𝑟𝑒𝑐𝑎𝑝 () 

Fig. 4 shows the speed trajectory, the cumulative energy 
consumption (at the battery), and the breakdown of the work 
for the segment length of 300 meters shown in Fig. 3. In this 
analysis, the energy consumption, Fig. 4(b), was calculated by 
assuming 80% of forward power flow and no regenerative 
braking. This graph also shows how the energy consumption 
of the optimal trajectory and the closed-form approximation 
are very similar to each other. The main difference between 
the two is that the optimal trajectory utilizes coasting while the 
linear approximation may be either accelerating or braking 
slightly for the second segment of the trajectory.  

By comparing the “Linear approximation” to the “Typical 
trajectory” (distilled from the FTP75) in Fig. 4, one can 
conclude that most of the savings originate from the “Linear 
approximation” and the “Optimal trajectory” reaching much 
lower maximum speeds, significantly reducing the energy 
component necessary to accelerate the vehicle, 𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐  in Fig. 
4(c). While the “Typical trajectory” utilizes energy for half of 
the total time, the “Optimal trajectory” and its linearization 

 

Fig. 3. Energy savings obtained with the closed-form approximation of 

optimal speed profiles compared to the results from the optimization. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  (a) Speed trajectories, (b) cumulative energy consumption, and 

(c) breakdown of energy components in a 300-meter segment. 
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only utilize a significant amount of energy for the first 3.5 
seconds. This is possible due to the high investment in kinetic 
energy at the beginning of the trajectory by the optimizer. In 
the second and third segments, the accumulated kinetic energy 
is utilized to overcome air drag and rolling resistance. Looking 
at Fig. 4(c), the last set of bars (in green) represents the kinetic 
energy recovered to overcome the air drag and rolling 
resistance as expressed in (21). This process works as a type 
of regenerative braking. However, since this recovery acts 
directly on the energy at the wheels, it operates at 100% 
efficiency, much higher than actual regenerative braking. 

 Fig. 5 shows the energy breakdown for two more segment 
lengths, 500 and 700-meters. The same trends are seen for 
every segment length, with the linear approximation and 
optimized trajectories utilizing much more of their kinetic 
energy to overcome air drag and rolling resistance. 

D. Regenerative braking vs. energy recovery 

By utilizing the energy invested in accelerating the vehicle 
to overcome air-drag and rolling resistance, the optimal speed 
profile and their linear approximations can achieve high 
energy savings. This can be considered a form of regenerative 
braking. As this process involves neither the mechanical nor 
the electrical drivetrain, it is not affected by their efficiencies 
and thus can be considered lossless. 

To analyze how effective this energy recovery is, it will be 
compared to actual regenerative braking. Fig. 6 shows the 
energy consumption of each one of the three speed trajectories 
previously introduced (“Typical trajectory,” “Linear 
approximation,” and “Optimal trajectory”) for segment 
lengths of 300 meters, 500 meters, and 700 meters. These 

results utilize a vehicle based on the chassis data of a Nissan 
Leaf with 85% of forward motion efficiency. The set “Typical 
trajectory ( ηreg = 40% )” utilizes 40% of regenerative 

braking efficiency while the other sets utilize 0% of 
regenerative braking efficiency. All the efficiency values are 
assumed to be constant and represent the overall efficiency 
from the battery to the wheels and vice versa.  

Table I shows the percentage savings obtained by the 
vehicle compared to the consumption of the “Typical 
trajectory (ηreg = 0%)”. These results validate the hypothesis 

that, since the energy recovery obtained from optimal speed 
trajectories occurs at the wheels, it is more effective than 
actual regenerative braking. This is demonstrated by the fact 
that the “Typical trajectory” utilizing 40% of regenerative 
braking efficiency only managed to recover, on average, 
21.15% of the transportation energy of the trajectory extracted 
from the FTP75. In contrast, the “Linear approximations” and 
the “Optimal trajectories” averaged 43.60% and 49.36%, 
respectively (without using traditional regenerative braking). 
This makes optimization a preferred method for minimizing 
transportation energy in comparison to traditional 
regenerative braking. However, in an ideal world, both 
strategies would be used in combination. 

TABLE I.  PERCENTAGE SAVINGS COMPARED TO THE TYPICAL 

TRAJECTORY WITHOUT REGENERATIVE BRAKING 

Speed trajectory 
Percentage savings 

300-meter 500-meter 700-meter 

Typical trajectory (𝜂𝑟𝑒𝑔 = 0%) 0.00% 0.00% 0.00% 

Typical trajectory (𝜂𝑟𝑒𝑔 = 40%) 24.96% 20.94% 17.55% 

Linear approximation 43.66% 44.86% 42.27% 

Optimal trajectory 46.29% 50.62% 51.18% 

IV. THE ROLE OF ACCELERATION IN ENERGY-OPTIMAL 

TRAJECTORIES 

It was previously demonstrated that, in stop-to-stop traffic, 
high accelerations can provide higher savings in optimal speed 
profiles [6]. Hence, several simulations based on the three-
segment speed profile depicted in Fig. 2 were performed. For 
this analysis, the initial acceleration was the only parameter 
changed to determine its role on transportation energy. These 
calculations were performed for vehicle models based on the 
chassis data of a Tesla Model S and a Nissan Leaf over 
distances of 300, 500, and 700 meters.  

The mathematical modeling shown in section III. B was 
utilized with lumped constant efficiency values. The total 
energy expenditure for the trajectories is given by 
equation (16). The estimated battery energy for initial 
accelerations varying from 1m/s2 to 10m/s2 are shown in Fig. 
7. From this data, two conclusions can be made. First, both 

 
(a) 

 
(b) 

Fig. 5. Breakdown of energy components in a (a) 500-meter segment and 

a (b) 700-meter segment. 

 

Fig. 6.  Energy consumption of each of the trajectories shown in section 

III-C for a vehicle with 85% of forward motion efficiency and two values 

of regenerative braking efficiency. 

 

Fig. 7. Estimated energy consumption of both vehicles as a fucntion of 

the initial acceleration. 
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vehicles show poor energy consumption for low accelerations 
in short segments. This is because they spend most of the 
trajectory in the acceleration phase. Second, both vehicles 
achieve most of their saving by 4m/s2 of initial acceleration; 
diminished returns are observed with higher accelerations. 

A. Comparison to optimization 

To better understand the energy consumption depicted in 
Fig. 7, the estimated energy obtained above was compared to 
the consumption obtained by a linearized version of the model 
in section II. A (here named calculated energy). In Fig. 8, for 
the vehicle based on the chassis data of a Nissan Leaf, the 
estimated energy consumption is plotted alongside the 
calculated energy of the same trajectory and the energy 
consumption of optimized trajectories as described in 
section II. B (utilizing 85% of forward power flow efficiency 
and no regenerative braking). Similar data is plotted in Fig. 9 
for the vehicle based on the chassis data of a Tesla Model S. 

From these plots, one can conclude that the estimated 
energy consumption, the calculated energy consumption of 
the closed-form approximation, and the optimized 
trajectories’ consumption are very close for short segments. 
Also, the estimated energy consumption’s accuracy 
deteriorates as the segment length increases, especially for 
high accelerations. However, in all scenarios, the calculated 
energy of the linear approximation shows remarkably close 
energy consumption to the optimal trajectory’s consumption. 

The previous section observed diminishing returns for 
accelerations greater than 4m/s2 for all segment lengths. In 
contrast, the optimized trajectories still observe significant 
savings for high accelerations in longer segments, especially 
for the more powerful Tesla Model S-based vehicle. The 
maximum speed is achieved earlier with higher accelerations, 
allowing for extended periods where the accumulated kinetic 

energy is used to overcome air drag and rolling resistance. 
High accelerations also lower the maximum speed and thus 
the kinetic energy for a given average speed constraint. 

B. Utilizing efficiency maps 

A similar analysis is shown with the energy consumption 
calculated based on a speed- and torque-dependent efficiency 
map, as shown in Fig. 1 (both forward powerflow and 
regenerative braking efficiencies are described). The lines in 
blue still represent the estimated energy consumption, with 
identical numbers to what is shown in Fig. 8 and Fig. 9. 

When utilizing this efficiency model, the diminished 
returns over 4m/s2 accelerations are present again. However, 
the energy consumption assumes a more linear behavior for 
longer segments with the Nissan Leaf-based vehicle (Fig. 10). 
The vehicle based on the Tesla Model S (Fig. 11) once more 
shows similar behavior to the Nissan Leaf-based vehicle. 
While the linear approximation still presents remarkably 
similar calculated energy consumption to the optimal speed 
trajectories, the deviation between the two increases in long 
segments. This is especially true for the Tesla-based vehicle. 
This happens due to the wide efficiency map of the vehicle, 
for which the optimizer can take advantage of high-efficiency 
operating points. Nevertheless, the energy advantage observed 
by the optimized trajectories comes with the cost of 
computational complexity. Approximated trajectories have a 
significantly lower computational complexity than the 
optimized trajectories. 

For both vehicles, the optimization achieves significantly 
better results than the estimated consumption in all tested 
accelerations (not only for high acceleration). Thus, making 
the estimation not a suitable tool to accurately predict the 
energy consumption of a linear approximation of an energy-
optimal speed trajectory when efficiency maps are utilized.   

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Energy consumption for a vehicle based on a Tesla Model S with 
85% of constant forward motion efficiency and no regenerative braking for 

segment lengths of (a) 300 meters, (b) 500 meters, and (c) 700 meters. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Energy consumption for a vehicle based on a Nissan Leaf with 
85% of constant forward motion efficiency and no regenerative braking for 

segment lengths of (a) 300, (b) 500, and (c) 700 meters. 
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V. CONCLUSION 

The performed energy component analysis for stop-to-
stop drive segments revealed several interesting insights. Most 
importantly, it shows that energy-optimal trajectories achieve 
significant efficiency gains over conventional speed 

trajectories (as derived from the FTP75 cycle) by lowering the 
kinetic energy component and recovering more energy from 
stored kinetic energy to overcome rolling resistance and air 
drag later in the trajectory. In a sense, this is similar to 
regenerative braking. However, here, the regenerated energy 
is directly recovered to overcome air drag and rolling 
resistance, i.e., there are no losses from moving energy from 
the wheel to the battery and vice versa. This and the fact that 
powertrain efficiency is typically higher under high-
performance situations (i.e., hard accelerations) are the main 
underlying reasons why energy optimization of stop-to-stop 
segments can reduce total expended energy by over 50%. 

One particularly interesting aspect of energy-optimized 
trajectories is the initial acceleration’s role: The higher the 
acceleration capability, the earlier the maximum speed is 
achieved and the longer the accumulated kinetic energy can 
be used to cover energy expenses later in the trajectory. High 
acceleration also lowers the maximally attained speed and, 
therefore, the kinetic energy component while keeping the 
average speed constraint. Hence a high acceleration capability 
can aid in reducing transportation energy in urban 
environments. We saw that vehicles achieved most energy 
savings by around an initial acceleration of 4m/s2.  

Even though the energy-optimal trajectories can have a 
significant energy advantage over the linear approximation 
(which is more pronounced for powerful drivetrains),  the 
linear approximation’s computational complexity still makes 
them an attractive option for real-world implementation. 
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Fig. 11. Energy consumption for a Tesla Models S utilizing efficiency 

maps and regenerative braking for segment lengths of (a) 300 meters, (b) 

500 meters, and (c) 700 meters. 
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Fig. 10. Energy consumption for a Nissan Leaf utilizing efficiency maps 
and regenerative braking for segment lengths of (a) 300 meters, (b) 500 

meters, and (c) 700 meters. 
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