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Abstract—Investigating the effect of China’s clean coal 

technology policy on air quality is of great significance for 

promoting energy transformation and formulating follow-up 

policies. Utilizing 31 provincial cities data in Chinese 

mainland from 2013 to 2020, the spatial variation 

characteristic and change rate of air quality index (AQI) are 

discussed in this study. Amongst, the AQI in 2020 is 

predicted by deep learning approaches, to eliminate the 

uncertainty that COVID-19 bring about. The association 

analysis between AQI and socio-economic factors is also 

conducted, to clarify the internal mechanism of clean coal 

technology policy. The results show that 1) The AQI can be 

better predicted by the tailored Convolutional Neural 

Network-Long Short Term Memory (CNN-LSTM) network; 

2) the air pollution in China shows an integration trend, 

embodying heavy and slight pollution in Northern and 

Southern China, respectively; 3) the clean coal technology 

policy has an average reduction effect of 18.82% on AQI. 

And there is a 2-year time lag before the policy takes any 

strong positive effects; 4) the clean coal technology policy 

mainly improved air quality through the way of emission 

reduction and de-industrialization. Practicable policy 

suggestions are put forward to supporting emission 

reduction, promoting energy transformation in China and 

applicable to other developing countries with scarce energy 

resources and severe air pollution. 

Keywords—coal-based clean energy, air quality, clean 

coal technology policy, deep learning approaches, energy 

transformation 

I. INTRODUCTION 

Energy resources have played a critical role in supporting 
the national economic and social development. However, it 
has been publicly recognized that there is a contradiction 
between energy utilization and climate change [1][2]. As the 
top carbon-emitting country, many countermeasures are 
adopted in China, to combat the stern climate situation. A 
good case in point is the goal of carbon peak and carbon 
neutral, it is declared that China would strive to realize 
carbon peak by 2030 and carbon neutrality by 2060. Notably, 
energy production and consumption contributed significantly 

to the total carbon emission in China, where coal and oil-gas 
related emissions took up 70%-80% and 15% [3][4], 
respectively. Therefore, there is the objective necessity to 
implement energy transformation, and construct the energy 
system which is clean, low-carbon, safe and efficient. 

However, the primary energy structure in China is coal-
centered, to meet the needs of energy transformation while 
adapt the structure of energy industry, a circular economy 
industry chain in realizing clean coal utilization has been 
proposed, namely, “coal development--coal with high 
quality--clean energy--integration of coal-based materials 
and chemicals”. In order to better fulfil the responsibility in 
the construction of clean coal industry, the Chinese 
government constantly implemented a series of laws, 
regulations, and policies. Two specialized action plans for 
promoting the clean and efficient use of coal were carried 
into effect in 2015, signifying that the clean and efficient use 
of coal in China entered the system implementation stage [5]. 
In addition, as 2020 is the last year of many clean coal 
technology policies, it is necessary to reveal the effect of the 
clean coal technology on air quality, with 2015 and 2020 as 
the prominent policy nodes. 

Nevertheless, to suppress the spread of Corona Virus 
Disease 2019 (COVID-19), the Chinese government 
implemented strict lockdown, which started with Wuhan and 
radiated to one-third of its cities [6]. Owing to the shutdown 
of industrial activities and traffic volume, an obvious decline 

of the primary air pollutants (NOx、CO、CO2、SO2、PM2.5) 

was observed in most of cities of China during the lockdown 
[7][8]. Undoubtedly, this would lead to high uncertainty 
while investigating the effect of clean coal technology policy 
on air quality. 

Not only clean coal technology policies, there have been 
heated discussions and debates over the effectiveness of 
China’s regulatory interventions on air pollution [9]. 
Accordingly, a number of academic papers have emerged to 
work on this hot topic. However, there are some drawbacks 
[10][11]: On the one hand, researches are often constrained 
by complicated modeling processes and uncertainties in 
emission inventory; Besides, the relationships between air 
pollution and other confounding factors are overlooked in 
most of the publications. 
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Here, employing panel data of 31 provincial cities in 
Chinese mainland from 2013 to 2020, we assess the air 
quality changes pre and post policy node of clean coal 
technology, to obtain its effect on air quality improvement. 
Our study has the following three contributions: (1) The 
outbreak of COVID-19 would bring about uncertainties 
when estimating the effect of long-term policies. Our study 
predicts the air pollution conditions in Chinese mainland in 
2020 via deep learning approaches, and results show that the 
tailored CNN-LSTM model has a good performance in 
predicting AQI. (2) Few literatures discuss the effect of clean 
coal technology policy on air quality improvement, with the 
background of coal-based clean energy transformation. Air 
quality data of 31 provincial cities in Chinese mainland from 
2013 to 2020 is combined, to clarify whether there is positive 
effect of clean coal technology policy on air quality or not. (3) 
The evaluation process is coupled with socio-economic 
factors, thus the internal mechanism of clean coal technology 
on reducing air pollution could be investigated, which is 
scarce in existing publications. Our study considers the five 
parameters, namely, economic development, environmental 
governance, industrialization, population density, and social 
development. 

II. DATA AND METHODS 

The system architecture and main technical route of this 
study is depicted in Fig.1. 

A. Data collection 

A total of 31 provincial cities in Chinese mainland are 
selected as the study area. Since the important node of clean 
coal technology policy is 2015, and the index describing the 
ambient air quality in China is reformulated after the 
publishment of the latest environmental air quality standard 
[12]. The AQI data is only available from 2013, thus the 
following data are extracted from 2013 to 2019 accordingly. 
After predicting the AQI in 2020, the investigated data 
covers 8 years before and after the policy node, namely, from 
2013 to 2020, which is adequate for policy evaluation [13]. 
The collected three types of data are summarized in TABLE 
I. Herein, the five kinds of socio-economic data represent 
Economic development (ED), Environmental governance 
(EG), Industrialization (IL), Population density (PD), and 
Social development (SD), respectively. 

TABLE I.  SUMMARY FOR THREE TYPES OF COLLECTED DATA 

Data Type Introduction Source 

Air quality 

data 

Concentrations of AQI, 
PM2.5, PM10, SO2, NO2, CO, 

O3 

https://www.aqistudy.cn/ 

Meteorological 
data 

Highest temperature (HT), 

Lowest temperature (LT), 
Wind direction (WD), 

Wind power (WP) 

http://tianqi.2345.com/ 

Socio-

economic data 

GDP per capita (CNY), 
The mean value of the 

removal rate of wastewater, 

waste gas and solid waste 
(%), 

The proportion of the 

secondary industry in GDP 
(%), 

The city’s population per 

unit area (people / km2), 
The number of civil cars 

(10000 vehicles) 

China City Statistical 
Yearbook and the 

prefecture-level city’s 

Statistical Bulletin of 
National Economic and 

Social Development 

B. Data preprocessing 

Considering that 2013-2015 is set as the period of before 
clean coal technology policy node, while 2016-2020 is after 
the policy node in this study, thus the air pollution condition 
in 2020 is predicted using the data of 2016-2019. After 
extraction, the daily air quality data and the daily 
meteorological data of 31 cities are combined to generate a 
tabular dataset, ranging from 22 January 2016 to 31 
December 2019, which is chosen for satisfying the training 
of predictive network. In order to feed the subsequent neural 
networks with complete and low noise data, data 
preprocessing is conducted. The four procedures are listed as 
follows and shown in Fig.2. Based on the data preprocessing, 
a random 6:2:2 split of the data is applied as the training set, 
the validation set, and the test set. Correspondingly, all the 
input data is ready for prediction up to this point. 

C. Model training 

With the rapid development of deep learning approaches, 
the research of air pollutant concentration prediction using 
such learning has become prevalent [14][15]. Herein, owing 
to its remarkable performance on processing time-series data, 
LSTM is the most frequently applied neural network in these 
researches [16][17]. LSTM is a variant of the Recurrent 
Neural Network (RNN) models, and could solve the problem 
of long-term dependencies that conventional RNNs cannot 
learn. Meanwhile, the intelligent design of memory cell in 
LSTM is valid for solving the problem of gradient vanishing 
in backpropagation, and can learn the input sequence with 
longer time steps. 

Nevertheless, because of the diffusion effect of airborne 
pollutant, its change is not only related to time but also to 
space, while spatial information of environmental monitoring 
data is usually ignored using LSTM. Correspondingly, CNN 
is explored, whose spatial data processing capability is 
demonstrated to be powerful. It is proven to be valid for 
forecasting air pollution conditions using CNN, as the 
monitoring data is spatially relevant [18]. What’s more, the 
advantage of CNN is that the training is relatively easy, and 
could effectively extract the important features. 

Therefore, on the basis of existing 
researches[18][19][20][21], a predictive model combined 
CNN and LSTM is applied and tailored in this study, which 
could explain the complexity and variety of airborne 
pollutants, and eliminate the dependence on the historical 
regularity of pollutants variation. The model is built using 
Keras and TensorFlow. The architecture of the introduced 
network is shown in Fig.3. Generally, the architecture of the 
predictive model is an Encoder-Decoder structure. The first 
half of CNN-LSTM network is CNN, and utilized for feature 
extraction of input data. The latter half is LSTM, which is 
used to analyze the features extracted by CNN and then to 
forecast the AQI of the next point in time. 

Detailedly, after the processing of the CNN part, the 
outputs are one-dimensional vectors with ground data 
features, are subsequently input to the LSTM layer. LSTM 
adds the time-series prediction function in this model, and its 
training processes are presented as equations. (1)-(6): 

Ⅰ. Forget phase. The LSTM first selectively forgets some 
input air quality data and the related parameters. 

  ft = σ ( Wf [ ht-1, xt ] + bf )  (1)
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Fig. 1. The system architecture of this study based on CNN-LSTM network. 
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Fig. 2. Procedures, the corresponding methods and principles of data preprocessing. 
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Fig. 3. The architecture of the tailored CNN-LSTM network. 
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Ⅱ. Selective memory phase. In this phase, LSTM would 
decide what new information to store in the unit state, which 
originates from two parts. The sigmoid layer determines the 
updated information and the tanh layer creates a candidate 
value vector. 

  it = σ ( Wi [ ht-1, xt ] + bi )   (2) 

Ct
' = tanh ( WC [ ht-1, xt] + bt )   (3) 

Ct = ft ⊙ Ct-1 + it ⊙ Ct
'  (4) 

Ⅲ. Output phase. Deciding the outsput information, 
namely, the predicted AQI. 

ot = σ ( Wo [ ht-1, xt ] + bo )  (5) 

ht = ot ⊙ tanh(Ct)   (6) 

where ft is the output of forget gate, σ is the sigmoid 
activation function, Wf, Wo, WC, Wi, and bf, bo, bi, bt is the 
coefficient and bias of linear relationship, respectively, ht−1 is 
hidden status of the last sequence, xt is the data of this 
sequence, it is the first part of output, Ct

' is the second part of 
output, Ct is the present cell status, Ct-1 is the previous cell 
status, ht is the update of hidden status, ot is the update of the 

first hidden status, ⊙ represents Hadamard product, requires 

corresponding elements in the matrix to be multiplied. 

Last in the two Dense layers, the correlations among the 
features are extracted through nonlinear variation, and then 
mapped to the output space. Through rolling prediction, the 
sequence prediction results from output layer are added to 
the dataset, and continue to achieve dynamic prediction 
outward. Notably, in order to improve the performance and 
effect of learning, the hyper-parameters are adjusted and 
optimized before learning for different studied city, namely, 
for different input datasets. To assess the error of prediction 
processing, Root Mean Square Error (RMSE) is applied. 
RMSE quantifies the dispersion between predicted and 
actual data, and the smaller the value is, the better the 
performance of predictive model. The measurement indexes 
with its equation are shown in equation (7). 

RMSE = (1/N∑i=1
N (Pi - Oi)2)1/2  (7) 

where N is the number of test samples, Pi is the predicted 
air pollutant concentration, Oi is the observed air pollutant 
concentrations. 

D. Spatial autocorrelation analysis 

To further analyze the temporal and spatial variation 
features of air quality of 31 central cities in Chinese 
mainland, spatial autocorrelation analysis method is applied, 
ranging from 2013 to 2020. ArcGIS 10.6 and GeoDa 
software are used to realize the calculation and analytic 
process. 

a) Global spatial autocorrelation analysis 

First, the global spatial autocorrelation analysis method is 
utilized to reflect the space gathering of AQI. The calculation 
formulas of global Moran’s I are listed as Equations. (8)-(9), 
and its significant testing is conducted by Equation. (10). 

I = ∑i=1
n∑j=1

n ( wij (xi - x)(xj - x) ⁄ S2∑i=1
n∑j=1

n wij (8) 

  S2 = 1/n ∑i=1
n (xi - x)2  (9) 

  Z(I) = I-E(I) / (Var(I))1/2  (10) 

where S2 is the variance of attribute value, n represents 31 
studied cities, xi, xj is the AQI value of city i, j, respectively, 

x is the average AQI of all cities, wij is spatial weight, E(I) 
is the mean of global Moran’s I, Var(I) is the variance of 
global Moran’s I, Z(I) is the significance level of global 
Moran’s I. The range of global Moran’s I is -1 to 1, if it is 
greater than 0, indicating the spatial distribution of AQI is 
positive; if less than 0, indicating a negative correlation; if 
equals to 0, indicating a random distribution. 

b) Regional spatial autocorrelation analysis 

Second, the highly and slightly polluted areas before and 
after policy node in these 31 cities are clarified through 
regional spatial autocorrelation analysis method, the 
calculation process of regional Moran’s I is shown as 
Equation. (11). 

Ii = (xi - x) / S2 ∑j=1 wij(xj - x)   (11) 

The significant level of regional Moran’s I is tested by 
Equation. (10) as well. If regional Moran’s I is greater than 0 
and is significant, suggesting there is high-high or low-low 
gathering area; if it is less than 0 and is significant, 
suggesting high-low or low-high gathering areas. 

E. Measuring AQI change rate during 2013 – 2020 

To make a fuller understanding regarding the improved 
air quality, a comparison is made between AQI pre and post 
the set policy node. To do so, 2013-2015 is taken as pre node 
year, and change of AQI is computed for 2016-2020 as after 
policy node. Equation. (12) is the mathematical formulation 
of the AQI’s change rate calculation. 

CAQI = (prAQI - poAQI) / prAQI × 100% (12) 

where CAQI is the change rate of AQI for each studied city, 
prAQI is the average AQI of each month for studied cites from 
2013 to 2015, poAQI is the average AQI of each month for 
studied cites from 2016 to 2020. The calculated results vary 
between -100% to 100%, where negative and positive values 
indicate improvement or deterioration of air quality, and 0 
represents no change. 

F. Investigating the association between AQI and 

confounding factors 

To discuss the relationship between air quality change 
and socio-economic factors, and further explore the internal 
mechanism of clean coal technology policy working on air 
quality improvement, correlation analysis is conducted with 
the help of SPSS 28.0 software. More specifically, the 
correlation degree is calculated with all socio-economic 
variables separately for each year. Based on this, we assume 
there is a linear correlation between CAQI, and ED, EG, IL, 
PD, and SD, the proposed analysis model is shown as 
Equation. (13). Ordinary Least Square (OLS) regression is 
also carried out, and the variance inflation factor of each 
variable is computed to verify the existence of 
multicollinearity of this model. 

lnCAQI = a0 + a1ln ∆ED + a2ln ∆EG + a3ln ∆IL + a4ln ∆PD 
+ a5ln ∆SD     (13) 

where ∆ED, ∆EG, ∆IL, ∆PD, and ∆SD are the change of 
ED, EG, IL, PD, and SD pre and post clean coal technology 
policy node, a0, a1, …, a5 are the model parameters. 
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III. RESULTS ANALYSIS 

A. Performance of the CNN-LSTM model 

As mentioned above, the extracted data including a total 
of 1440-day air quality and meteorological data (January 22, 
2016 to December 31, 2019) of 31 provincial cities in 
Chinese mainland, 60% of which are chosen as the training 
set, 20% as the validation set and 20% as the test set. After 
determining the best basic network architecture for the 
current prediction tasks, models are set up in units of cities, 
and the training set is used to train the tailored CNN-LSTM 
models. The RMSE value is obtained to evaluate model 
performance, with the average of 22.06. 

B. Spatial change characteristics of air quality 

a) Results of global spatial autocorrelation analysis 

The global spatial autocorrelation analysis is carried out 
using the average of monthly AQI for 31 studied cities from 
2013 to 2020. The results of global Moran’s I are all greater 
than 0, and are significant under significance testing. 
Correspondingly, that could signify there are significant and 
positive spatial correlations among the average of monthly 
AQI. 

b) Spatial pattern representing in north - south 

differentiation 

Through global spatial autocorrelation analysis, the space 
gathering of air pollution is proven to exist. Furthermore, to 
definitely point out the gathering district, the results of 
regional spatial autocorrelation is also obtained. As shown in 
Fig.4, it could be found that there still are high-high 
gathering areas (Heavy pollution) and low-low gathering 
areas (Slight pollution) from 2013 to 3030. Meanwhile, a 
north - south spatial heterogeneity pattern is obvious, 
embodying heavy pollution in Northern China, and slight 
pollution in Southern China. 

From the perspectives of heavy pollution zones’ variation 
characteristics, an unicentric pattern centered by Northern 
China could be found easily from 2013 to 2015, namely, 
before the clean coal technology policy node. Ranging from 
2016 to 2020, although the air quality was improved in 
general, relatively speaking, the high polluted zones enlarged. 
Detailedly, expanding to Northwest and Northeast China. 
Regarding the variation characteristics of slight pollution 
zone, there are two spatial patterns in general, namely, the 
monocentric pattern centered by Southern China, bicentric 
pattern centered by Southern China and south of Southwest 
China. Specifically, from 2013 to 2015, the slight polluted 
area in the nationwide mainly locates in Southern China. 
After the clean coal technology policy node, the regional 
distribution of slight polluted area scattered to the south of 
Southwest China gradually. Amongst, it could be observed in 
2019 most easily. 

C. Effect of clean coal technology policy on air quality 

If the comparison is done at a temporal scale, it is evident 
that the AQI in Chinese mainland had considerably reduced 
from 2013 to 2020. As shown in Fig.5, AQI of all studied 
cites are all less than 100 from 2017, which is the threshold 
AQI value of excessive pollutants, and is decreasing year by 
year. Herein, for better classification and comparison, the 31 
provincial cities are categorized into 7 districts according to 
the official administrative geographical areas dividing. 

Correspondingly, quite an identical trend is seen in the case 
of Central China, whose air quality improvement is the 
greatest covering the time span from 2013 to 2020. 

For better understandability of policy effect on AQI, the 
change rate is computed between pre and post policy node. 
TABLE II lists the percentage change of AQI in 31 cities of 
Chinese mainland. Out of the total area, 100% area 
experienced improvement of air quality, with the change rate 
of AQI ranging from 29.54% to 4.28%. Regionally, the 
degree of improvement was maximum in Central China 
(25.61%), followed by Northeast (25.47%), Eastern 
(20.88%), and Northern China (18.30%). And the three 
districts which have the least improvement are Northwest, 
Southern, and Southwest China, with the change rate of 
15.27%, 14.63%, and 14.44%, respectively. On average, the 
AQI value are reduced by 18.82% in Chinese mainland from 
2013 to 2020, indicating that with the implementation of 
clean coal technology policy, China’s air quality is improved 
to a great extent. 

D. Mechanism analysis of clean coal technology policy on 

air quality 

To further analyze the specific mechanism of the clean 
coal technology policy to improve air quality, a correlation 
analysis between air quality change and socio-economic 
factors is conducted. Herein, if the coefficient is greater than 
0, indicating there is a positive relationship between the 
decrease of AQI and socio-economic factors; if less than 0, 
indicating a negative relationship. Besides, the variance 
inflation factors of each variable are computed through OLS 
method, ranging from 1.007 to 2.297, all less than the 
threshold of 10, indicating that there is no multiple 
collinearity issue in this linear correlation model [22]. 

As depicted in Fig.6, we find that there is no significant 
correlation (coefficients greater than 0.6) between the change 
of AQI and socio-economic factors. However, an obvious 
phenomenon is that the increase of the environmental 
governance, and the decrease of industrialization are 
positively related to the air quality improvement. Further, the 
increase of economic development, population density, and 
social development are all negatively related to the air 
quality improvement. Relating to the coal-based clean energy 
industry, we can conduct that the clean coal technology 
policy mainly reduced air pollution through countermeasures 
on emission reduction and de-industrialization. 

IV. POLICY IMPLICATIONS 

In this study, we estimate the changes in AQI from 2013 
to 2020, to show the effect of clean coal technology policy 
on air quality. To the best of our knowledge, this is the first 
study comprehensively assessing the air quality improvement 
against the background of coal industry’s energy 
transformation at the national level. According to the 
research findings, we believe that it could offer practical 
references from four dimensions: 

A. Support environmental monitoring 

Through our work, we could conclude that pre and post 
policy node, Northern China is always at a higher pollution 
level compared to other districts, while Southern and 
Southwest China are two main districts whose air pollution 
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Fig. 4. The analysis of AQI regional spatial autocorrelation in 31 provincial cities of Chinese mainland. 
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Fig. 5. The variation trend of AQI in Chinese mainland. 

TABLE II.  THE CHANGE RATE OF AQI PRE AND POST CLEAN COAL 

TECHNOLOGY POLICY NODE (UNIT: %)  

District City CAQI District City CAQI 

Northern 

Beijing 26.46 

Southwest 

Chongqing 18.58 

Tianjin 22.47 Chengdu 19.16 

Shijiazhuang 27.60 Guiyang 20.83 

Taiyuan 4.28 Kunming 6.30 

Huhhot 10.70 Lasa 7.34 

Northeast 

Shenyang 25.26 

Southern 

Guangzhou 15.52 

Changchun 26.40 Nanning 21.66 

Harbin 24.75 Haikou 6.72 

Northwest 

Xi’an 11.69 

Eastern 

Shanghai 21.01 

Lanzhou 10.10 Nanjing 27.48 

Xining 17.62 Hangzhou 21.93 

Yinchuan 17.62 Hefei 24.09 

Urumqi 19.34 Fuzhou 14.28 

Central 

Zhengzhou 22.47 Nanchang 10.92 

Wuhan 29.54 Jinan 26.42 

Changsha 24.82  

 

Fig. 6. Correlation coefficients between air quality change and socio-

economic factors. 

 

 

 

 

levels are slighter. Accordingly, the related department 
would have an overview of cities, provinces, and districts 
that need to be supervised in priority, the insights into 
allocating the environmental regulatory resources are 
provided as well. 

B. Enhance consensus building 

Actually, the public are not adequately aware of the 
efficiency of clean coal technology policy. More often, the 
whole society would consider the implementation of clean 
air policy as useless, misled by the occurrence of extreme 
inclement weather. Nevertheless, the positive effect of clean 
coal technology policy on air quality improvement is verified, 
showing an average reduction of 18.82%. Therefore, this 
study will help to guide society in shaping scientific 
cognition above the influence of clean coal technology on 
improving air quality. Moreover, references could be 
presented for energy companies, coal companies and related 
industry organizations to correctly grasp the direction of 
power development. 

C. Promote policy making 

It is a transformation period of Chinese energy structure 
from 2020 to 2030, the formulation of industrial policy in 
this period should provide a basis for long-term energy 
transformation. And the 14th Five-Year period (2021-2025) is 
also critical for China’s energy transition and climate change 
response. Through assessing the effect of clean coal 
technology policy on atmospheric emission reduction, it is 
expected to timely provide a reference for the government to 
establish subsequent laws, policies, and regulations. 

D. Facilitate international coordination 

By verifying the effect of clean coal technology policy on 
air quality in China, practical policy experiences can be used 
for reference by other developing countries with scarce 
energy resources and severe air pollution. Meanwhile, it 
would be beneficial to reasonably share responsibilities for 
the international goal of tackling climate change among 
countries, also preventing the transboundary effects of air 
pollution. 

V. CONCLUSIONS 

Using the panel data of 31 provincial cities in Chinese 
mainland from 2013 to 2019, the AQI in 2020 is predicted 
with the help of deep learning approaches, to eliminate the 
influence of COVID-19 on the actual condition of air 
pollution. Moreover, after obtaining the complete AQI 
dataset from 2013 to 2020, the effect of clean coal 
technology policy on air quality is investigated. Herein, to 
grasp the spatial variation characteristics of AQI before and 
after the policy node, and further clarify the internal 
mechanism of clean coal technology policy on air quality 
improvement, the spatial autocorrelation analysis and 
association test between AQI and socio-economic factors are 
conducted. The main conclusions are as follows. 

First, the AQI can be predicted in a good performance 
using the CNN-LSTM network tailored in this study, which 
could embody the complex relationship between AQI and 
other confounding factors, i.e., concentrations of PM2.5, PM10, 
SO2, CO, NO2, and O3, and meteorological data of 
temperature, wind direction, and wind power. 
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Second, the integration trend of air pollution in China is 
evident, embodying heavy pollution in Northern China, and 
slight pollution in Southern China for the most time. More 
importantly, our findings propose that the clean coal 
technology policy has significantly improved overall air 
quality in Chinese mainland, with the average reduction of 
18.82%. Amongst, covering the time span from 2013 to 2020, 
the AQI of central China decreased the most. 

Lastly, the effect of clean coal technology policy on air 
quality improvement is significantly observed from 2018, 
indicating a 2-year time lag before the policy takes strong 
positive influences. Finally, the mechanism analysis shows 
that clean coal technology policy not only directly reduces 
air pollution through promoting emission reduction, but also 
indirectly decrease air pollution via de-industrialization. 
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